149 resultados para Cell and Developmental Biology
Resumo:
Nhlh1 is a basic helix-loop-helix transcription factor whose expression is restricted to the nervous system and which may play a role in neuronal differentiation. To directly study Nhlh1 function, we generated null mice. Homozygous mutant mice were predisposed to premature, adult-onset, unexpected death. Electrocardiograms revealed decreased total heart rate variability, stress-induced arrhythmia, and impaired baroreceptor sensitivity. This predisposition to arrhythmia is a likely cause of the observed death in the mutant mice. Heterozygosity for the closely related transcription factor Nhlh2 increased the severity of the Nhlh1-null phenotype. No signs of primary cardiac structural or conduction abnormalities could be detected upon necropsy of the null mice. The pattern of altered heart rhythm observed in basal and experimental conditions (stress and pharmacologically induced) suggests that a deficient parasympathetic tone may contribute to the arrhythmia in the Nhlh1-null mouse. The expression of Nhlh1 in the developing brain stem and in the vagal nuclei in the wild-type mouse further supports this hypothesis. The Nhlh1 mutant mouse may thus provide a model to investigate the contribution of the autonomic nervous system to arrhythmogenesis.
Resumo:
Osteopontin (OPN) is a predominantly secreted extracellular matrix glycophosphoprotein which binds to alpha v-containing integrins and has an important role in malignant cell attachment and invasion. High OPN expression in the primary tumor is associated with early metastasis and poor outcome in human breast and other cancers. Forced OPN overexpression in benign cells may induce neoplastic-like cell behaviour including increased attachment and invasion in vitro as well as the ability to metastasize in vivo. Conversely, OPN inhibition by antisense cDNA impedes cell growth and tumor forming capacity. OPN is not mutationally activated in cancer but its expression is regulated by Wnt/Tcf signaling, steroid receptors, growth factors, ras, Ets and AP-1 transcription factors. Presumably these factors are implicated in induction of OPN overexpression in cancer. Greater understanding of the role of OPN in neoplastic change and its transcriptional regulation may enable development of novel cancer treatment strategies
Resumo:
BACKGROUND: Diabetics have a significantly higher percentage of sperm with nuclear DNA (nDNA) fragmentation and increased levels of advanced glycation end products (AGEs), in their testis, epididymis and sperm. As the receptor for AGEs (RAGE) is important to oxidative stress and cell dysfunction, we hypothesise, that it may be involved in sperm nDNA damage. METHODS: Immunohistochemistry was performed to determine the presence of RAGE in the human testis and epididymis. A comparison of the receptor's incidence and localisation on sperm from 10 diabetic and 11 non-diabetic men was conducted by blind semi-quantitative assessment of the immunostaining. ELISA analysis ascertained RAGE levels in seminal plasma and sperm from 21 diabetic and 31 non-diabetic subjects. Dual labelling immunolocalisation was employed to evaluate RAGE's precise location on the sperm head. RESULTS: RAGE was found throughout the testis, caput epididymis, particularly the principle cells apical region, and on sperm acrosomes. The number of sperm displaying RAGE and the overall protein amount found in sperm and seminal plasma were significantly higher in samples from diabetic men (p
Resumo:
Alpha-tocopherol (aT), the predominant form of vitamin E in mammals, is thought to prevent oxidation of polyunsaturated fatty acids. In the lung, aT is perceived to be accumulated in alveolar type II cells and secreted together with surfactant into the epithelial lining fluid. Conventionally, determination of aT and related compounds requires extraction with organic solvents. This study describes a new method to determine and image the distribution of aT and related compounds within cells and tissue sections using the light-scattering technique of Raman microscopy to enable high spatial as well as spectral resolution. This study compared the nondestructive analysis by Raman microscopy of vitamin E, in particular aT, in biological samples with data obtained using conventional HPLC analysis. Raman spectra were acquired at spatial resolutions of 2-0.8 microm. Multivariate analysis techniques were used for analyses and construction of corresponding maps showing the distribution of aT, alpha-tocopherol quinone (aTQ), and other constituents (hemes, proteins, DNA, and surfactant lipids). A combination of images enabled identification of colocalized constituents (heme/aTQ and aT/surfactant lipids). Our data demonstrate the ability of Raman microscopy to discriminate between different tocopherols and oxidation products in biological specimens without sample destruction. By enabling the visualization of lipid-protein interactions, Raman microscopy offers a novel method of investigating biological characterization of lipid-soluble compounds, including those that may be embedded in biological membranes such as aT.
Resumo:
The cellular localization of the activin-binding protein, follistatin, in the rat testis has been a matter of some controversy with different investigators claiming that Sertoli cells, Leydig cells or germ cells are the primary cell types containing this protein. The localization of mRNA encoding follistatin was re-examined using reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization as well as the distribution of follistatin by immunohistochemistry. The results demonstrate that mRNA encoding follistatin is located in many germ cells including type B spermatogonia, primary spermatocytes with the exception of the late leptotene and early zygotene stages, and spermatids at steps 1 to 11. It is also found in Sertoli cells and endothelial cells but not in Leydig cells. Immunohistochemistry, using two different antisera to follistatin, showed that this protein was localized to spermatogonia, primary spermatocytes at all stages except the zygotene stage, spermatids at all stages and to endothelial cells and Leydig cells in the intratubular regions. The failure to detect mRNA for follistatin in Leydig cells using RT-PCR and in situ hybridization suggests that the immunohistochemical localization in these cells reflects binding of follistatin produced elsewhere. The widespread localization of follistatin, taken together with its capacity to neutralize the actions of activin, may indicate that follistatin modulates a range of testicular actions of activin, many of which remain unknown.
Resumo:
Two series of ruthenium(II) polypyridyl complexes [Ru(bipy)2(phpytr)]+ and [Ru(bipy)2(phpztr)]+ (where Hphpytr = 2-(5-phenyl-1H-[1,2,4]triazol-3-yl)-pyridine and Hphpztr = 2-(5-phenyl-1H-[1,2,4]triazol-3-yl)-pyrazine) are examined by electrochemistry, UV/Vis, emission, resonance Raman, transient resonance Raman and transient absorption spectroscopy, in order to obtain a more comprehensive understanding of their excited state electronic properties. The interpretation of the results obtained is facilitated by the availability of several isotopologues of each of the complexes examined. For the pyridine-1,2,4-triazolato based complex the lowest emissive excited state is exclusively bipy based, however, for the pyrazine based complexes excited state localisation on particular ligands shows considerable solvent and pH dependency.