83 resultados para CGB-ECO2-12B-14
Resumo:
Fresh concrete can exhibit different rheological behavior when at rest than when flowing. This difference is due to thixotropy, which can have important consequences for formwork pressure, multi-lift casting, slip-form paving, pumping, and segregation resistance. This TechNote defines thixotropy and distinguishes it from other changes in rheological properties; discusses the origins of, test methods for measuring, and factors affecting thixotropy; and concludes with its applications.
Resumo:
Carbon and nitrogen stable isotope analysis (SIA) has identified the terrestrial subsidy of freshwater food-webs but relies on different 13C fractionation in aquatic and terrestrial primary producers. However dissolved inorganic carbon (DIC) is partly comprised of 13C depleted respiration of terrestrial C and ‘old’ C derived from weathering of catchment geology. SIA thus fails to differentiate between the contribution of old and recently fixed terrestrial C. DIC in alkaline lakes is partially derived from weathering of 14C-free carbonaceous bedrock This
yields an artificial age offset leading samples to appear significantly older than their actual age. As such, 14C can be used as a biomarker to identify the proportion of autochthonous C in the food-web. With terrestrial C inputs likely to increase, the origin and utilisation of ‘old’ or ‘recent’ allochthonous C in the food-web can also be determined. Stable isotopes and 14C were measured for biota, particulate organic matter (POM), DIC and dissolved organic carbon (DOC) from Lough Erne, Northern Ireland, a humic but alkaline lake. High winter δ15N values in calanoid zooplankton (δ15N =24‰) relative to phytoplankton and POM (δ15N =6‰ and 12‰ respectively) may reflect several microbial trophic levels between terrestrial C and calanoids. Furthermore winter calanoid 14C ages are consistent with DOC from inflowing rivers (87 and 75 years BP respectively) but not phytoplankton (355 years BP). Summer calanoid δ13N, δ15N and 14C (312 years BP) indicate greater reliance on phytoplankton. There is also temporal and spatial variation in DIC, DOC and POM C isotopes.
Resumo:
Researchers have proposed 1-factor, 2-factor, and bifactor solutions to the 12-item Consideration of Future Consequences Scale (CFCS-12). In order to overcome some measurement problems and to create a robust and conceptually useful two-factor scale the CFCS-12 was recently modified to include two new items and to become the CFCS-14. Using a University sample, we tested four competing models for the CFCS-14: (a) a 12-item unidimensional model, (b) a model fitted for two uncorrelated factors (CFC-Immediate and CFC-Future), (c) a model fitted for two correlated factors (CFC-I and CFC-F), and (d) a bifactor model. Results suggested that the addition of the two new items has strengthened the viability of a two factor solution of the CFCS-14. Results of linear regression models suggest that the CFC-F factor is redundant. Further studies using alcohol and mental health indicators are required to test this redundancy.