92 resultados para Beam Dynamics with Delay


Relevância:

50.00% 50.00%

Publicador:

Resumo:

The compression of a finite extent Gaussian laser pulse in collisional plasma is investigated. An analytical model is employed to describe the spatiotemporal evolution of a laser pulse propagating through the plasma medium. The pulse geometry is modeled via an appropriate ansatz which takes into account both beam radius (in space) and pulse width (in time). Compression and self-focusing are taken into account via appropriated group velocity dispersion and nonlinearity terms. The competition among the collisional nonlinearity in the plasma and the effect of divergence due to diffraction is pointed out and investigated numerically. Our results suggest that laser pulse compression and intensity localization is enhanced by plasma collisionality. In specific, a pulse width compression by an order of magnitude approximately is observed, for typical collisional laser plasma parameters, along with a significant increase in the intensity.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The study of non-Maxwellian plasmas is crucial to the understanding of space and astrophysical plasma dynamics. In this paper, we investigate the existence of arbitrary amplitude ion-acoustic solitary waves in an unmagnetized plasma consisting of ions and excess superthermal electrons (modelled by a kappa-type distribution), which is penetrated by an electron beam. A kappa (kappa-) type distribution is assumed for the background electrons. A (Sagdeev-type) pseudopotential formalism is employed to derive an energy-balance like equation. The range of allowed values of the soliton speed (Mach number), wherein solitary waves may exist, is determined. The Mach number range (allowed soliton speed values) becomes narrower under the combined effect of the electron beam and of the superthermal electrons, and may even be reduced to nil (predicting no solitary wave existence) for high enough beam density and low enough kappa (significant superthermality). For fixed values of all other parameters (Mach number, electron beam-to-ion density ratio and electron beam velocity), both soliton amplitude and (electric potential perturbation) profile steepness increase as kappa decreases. The combined occurrence of small-amplitude negative potential structures and larger amplitude positive ones is pointed out, while the dependence of either type on the plasma parameters is investigated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By molecular dynamics (MD) simulations we study the crystallization process in a model system whose particles interact by a spherical pair potential with a narrow and deep attractive well adjacent to a hard repulsive core. The phase diagram of the model displays a solid-fluid equilibrium, with a metastable fluid-fluid separation. Our computations are restricted to fairly small systems (from 2592 to 10368 particles) and cover long simulation times, with constant energy trajectories extending up to 76x10(6) MD steps. By progressively reducing the system temperature below the solid-fluid line, we first observe the metastable fluid-fluid separation, occurring readily and almost reversibly upon crossing the corresponding line in the phase diagram. The nucleation of the crystal phase takes place when the system is in the two-fluid metastable region. Analysis of the temperature dependence of the nucleation time allows us to estimate directly the nucleation free energy barrier. The results are compared with the predictions of classical nucleation theory. The critical nucleus is identified, and its structure is found to be predominantly fcc. Following nucleation, the solid phase grows steadily across the system, incorporating a large number of localized and extended defects. We discuss the relaxation processes taking place both during and after the crystallization stage. The relevance of our simulation for the kinetics of protein crystallization under normal experimental conditions is discussed. (C) 2002 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The construction of short pulse (

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A technique is described whereby measurements of ions extracted from an electron beam ion trap can be used to deduce their temperature dynamics. The measured temperature dynamics shows the expected trend as a function of charge and also gives evidence for Landau-Spitzer heating, ionization heating and evaporative cooling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The acceleration of multi-MeV protons from the rear surface of thin solid foils irradiated by an intense (similar to 10(18) W/cm(2)) and short (similar to 1.5 ps) laser pulse has been investigated using transverse proton probing. The structure of the electric field driving the expansion of the proton beam has been resolved with high spatial and temporal resolution. The main features of the experimental observations, namely, an initial intense sheath field and a late time field peaking at the beam front, are consistent with the results from particle-in-cell and fluid simulations of thin plasma expansion into a vacuum.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent progress in laboratory-based electron-ion scattering is reviewed, and the sensitivity of observed interference structure as a probe of collision dynamics is discussed. The extension of our use of positive ions as scattering targets to photon-ion interactions is demonstrated with the first ion-beam measurements for the fragmentation of a molecular ion, H-2(+), using intense femtosecond laser pulses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The collision processes of highly charged ions with electrons have been studied with an electron beam ion trap. Resonant inner-shell processes such as dielectronic recombination and resonant excitation double autoionization were investigated by observing the number ratio of extracted ions with adjacent charge states. (c) 2006 Elsevier Ltd. All rights reserved.