209 resultados para Basic Integration
Resumo:
Complexity is conventionally defined as the level of detail or intricacy contained within a picture. The study of complexity has received relatively little attention-in part, because of the absence of an acceptable metric. Traditionally, normative ratings of complexity have been based on human judgments. However, this study demonstrates that published norms for visual complexity are biased. Familiarity and learning influence the subjective complexity scores for nonsense shapes, with a significant training x familiarity interaction [F(1,52) = 17.53, p <.05]. Several image-processing techniques were explored as alternative measures of picture and image complexity. A perimeter detection measure correlates strongly with human judgments of the complexity of line drawings of real-world objects and nonsense shapes and captures some of the processes important in judgments of subjective complexity, while removing the bias due to familiarity effects.
Resumo:
The Irish border has historically been one of the most contested borders in Europe. In the context of the peace process and EU membership, co-operation between Northern Ireland and the Republic of Ireland has been encouraged, supported and normalised, although internal borders of segregation stubbornly remain. This paper offers a conceptualisation of borders in conflict cases and a theoretical account of how European integration can affect their transformation. Analysis of the Northern Ireland case shows there are ambiguities within integration that allow for a ‘rebordering’ of identities at the same time as the state border diminishes in significance.
Resumo:
We study the effects of amplitude and phase damping decoherence in d-dimensional one-way quantum computation. We focus our attention on low dimensions and elementary unidimensional cluster state resources. Our investigation shows how information transfer and entangling gate simulations are affected for d >= 2. To understand motivations for extending the one-way model to higher dimensions, we describe how basic qudit cluster states deteriorate under environmental noise of experimental interest. In order to protect quantum information from the environment, we consider encoding logical qubits into qudits and compare entangled pairs of linear qubit-cluster states to single qudit clusters of equal length and total dimension. A significant reduction in the performance of cluster state resources for d > 2 is found when Markovian-type decoherence models are present.