110 resultados para BALL
Resumo:
To date, the usefulness of stereoscopic visual displays in research on manual interceptive actions has never been examined. In this study, we compared the catching movements of 8 right-handed participants (6 men, 2 women) in a real environment (with suspended balls swinging past the participant, requiring lateral hand movements for interception) with those in a situation in which similar virtual ball trajectories were displayed stereoscopically in a virtual reality system (Cave Automated Virtual Environment [CAVE]; Cruz-Neira, Sandin, DeFranti, Kenyon, & Hart, 1992) with the head fixated. Catching the virtual ball involved grasping a lightweight ball attached to the palm of the hand. The results showed that, compared to real catching, hand movements in the CAVE were (a) initiated later, (b) less accurate, (c) smoother, and (d) aimed more directly at the interception point. Although the latter 3 observations might be attributable to the delayed movement initiation observed in the CAVE, this delayed initiation might have resulted from the use of visual displays. This suggests that stereoscopic visual displays such as present in many virtual reality systems should be used circumspectly in the experimental study of catching and should be used only to address research questions requiring no detailed analysis of the information-based online control of the catching movements.
Resumo:
Low-temperature (<200 degrees C) hydrocarbon selective catalytic reduction of NOx has been achieved for the first time in the absence of hydrogen using a solvent-free mechanochemically prepared Ag/Al2O3 catalyst. Catalysts prepared by this ball-milling method show a remarkable increase in activity for the reduction of nitrogen oxides with octane by lowering the light-off temperature by up to 150 degrees C compared with a state-of-the-art 2 wt %Ag/Al2O3 catalyst prepared by wet impregnation. The best catalyst prepared from silver oxide showed 50% NOx conversion at 240 degrees C and 99%, at 302 degrees C. The increased activity is not due to an increased surface area of the support, but may be associated with a change in.the'defeet structure of the alumina surface, leading to the formation of the small silver clusters necessary for the activation of the octane without leading to total combustion. On the other hand, since one possible role of hydrogen is to remove inhibiting species from the silver, we cannot exclude some change in the chemical properties of the silver as a result of the ball-milling treatment.
Resumo:
We review some recent developments in many body perturbation theory (MBPT) calculations that have enabled the study of interfaces and defects. Starting from the theoretical basis of MBPT, Hedin's equations are presented, leading to the CW and CWI' approximations. We introduce the perturbative approach, that is the one most commonly used for obtaining quasiparticle (QP) energies. The practical strategy presented for dealing with the frequency dependence of the self energy operator is based on either plasmon-pole models (PPM) or the contour deformation technique, with the latter being more accurate. We also discuss the extrapolar method for reducing the number of unoccupied states which need to be included explicity in the calculations. The use of the PAW method in the framework of MBPT is also described. Finally, results which have been obtained using, MBPT for band offsets a interfaces and for defects presented, with companies on the main difficulties and cancels.
Schematic representation of the QP corrections (marked with ) to the band edges (E and E-v) and a defect level (F) for a Si/SiO2 interface (Si and O atoms are represented in blue and red, respectively, in the ball and stick model) with an oxygen vacancy leading to a Si-Si bond (the Si atoms involved in this bond are colored light blue).
Resumo:
Manual interception, such as catching or hitting an approaching ball, requires the hand to contact a moving object at the right location and at the right time. Many studies have examined the neural mechanisms underlying the spatial aspects of goal-directed reaching, but the neural basis of the spatial and temporal aspects of manual interception are largely unknown. Here, we used repetitive transcranial magnetic stimulation (rTMS) to investigate the role of the human middle temporal visual motion area (MT+/V5) and superior parieto-occipital cortex (SPOC) in the spatial and temporal control of manual interception. Participants were required to reach-to-intercept a downward moving visual target that followed an unpredictably curved trajectory, presented on a screen in the vertical plane. We found that rTMS to MT+/V5 influenced interceptive timing and positioning, whereas rTMS to SPOC only tended to increase the spatial variance in reach end points for selected target trajectories. These findings are consistent with theories arguing that distinct neural mechanisms contribute to spatial, temporal, and spatiotemporal control of manual interception.
Resumo:
Growing evidence suggests that significant motor problems are associated with a diagnosis of Autism Spectrum Disorders (ASD), particularly in catching tasks. Catching is a complex, dynamic skill that involves the ability to synchronise one's own movement to that of a moving target. To successfully complete the task, the participant must pick up and use perceptual information about the moving target to arrive at the catching place at the right time. This study looks at catching ability in children diagnosed with ASD (mean age 10.16 ± 0.9 years) and age-matched non-verbal (9.72 ± 0.79 years) and receptive language (9.51 ± 0.46) control groups. Participants were asked to "catch" a ball as it rolled down a fixed ramp. Two ramp heights provided two levels of task difficulty, whilst the sensory information (audio and visual) specifying ball arrival time was varied. Results showed children with ASD performed significantly worse than both the receptive language (p =.02) and non-verbal (p =.02) control groups in terms of total number of balls caught. A detailed analysis of the movement kinematics showed that difficulties with picking up and using the sensory information to guide the action may be the source of the problem. © 2013 Elsevier Ltd.
Resumo:
Tissue microarrays (TMAs) represent a powerful method for undertaking large-scale tissue-based biomarker studies. While TMAs offer several advantages, there are a number of issues specific to their use which need to be considered when employing this method. Given the investment in TMA-based research, guidance on design and execution of experiments will be of benefit and should help researchers new to TMA-based studies to avoid known pitfalls. Furthermore, a consensus on quality standards for TMA-based experiments should improve the robustness and reproducibility of studies, thereby increasing the likelihood of identifying clinically useful biomarkers. In order to address these issues, the National Cancer Research Institute Biomarker and Imaging Clinical Studies Group organized a 1-day TMA workshop held in Nottingham in May 2012. The document herein summarizes the conclusions from the workshop. It includes guidance and considerations on all aspects of TMA-based research, including the pre-analytical stages of experimental design, the analytical stages of data acquisition, and the postanalytical stages of data analysis. A checklist is presented which can be used both for planning a TMA experiment and interpreting the results of such an experiment. For studies of cancer biomarkers, this checklist could be used as a supplement to the REMARK guidelines.
Resumo:
Despite being largely characterised as a social and cognitive disorder, strong evidence indicates the presence of significant sensory-motor problems in Autism Spectrum Disorder (ASD). This paper outlines our progression from initial, broad assessment using the Movement Assessment Battery for Children (M-ABC) to subsequent targeted kinematic assessment. In particular, pronounced ASD impairment seen in the broad categories of manual dexterity and ball skills was found to be routed in specific difficulties on isolated tasks, which were translated into focused experimental assessment. Kinematic results from both subsequent studies highlight impaired use of perception-action coupling to guide, adapt and tailor movement to task demands, resulting in inflexible and rigid motor profiles. In particular difficulties with the use of temporal adaption are shown, with "hyperdexterity" witnessed in ballistic movement profiles, often at the cost of spatial accuracy and task performance. By linearly progressing from the use of a standardised assessment tool to targeted kinematic assessment, clear and defined links are drawn between measureable difficulties and underlying sensory-motor assessment. Results are specifically viewed in-light of perception-action coupling and its role in early infant development suggesting that rather than being 'secondary' level impairment, sensory-motor problems may be fundamental in the progression of ASD. This logical and systematic process thus allows a further understanding into the potential route of observable motor problems in ASD; a vital step if underlying motor problems are to be considered a fundamental aspect of autism and allow a route of non-invasive preliminary diagnosis.
Resumo:
Nonlinear phenomena play an essential role in the sound production process of many musical instruments. A common source of these effects is object collision, the numerical simulation of which is known to give rise to stability
issues. This paper presents a method to construct numerical schemes that conserve the total energy in simulations of one-mass systems involving collisions, with no conditions imposed on any of the physical or numerical parameters.
This facilitates the adaptation of numerical models to experimental data, and allows a more free parameter adjustment in sound synthesis explorations. The energy preservedness of the proposed method is tested and demonstrated though several examples, including a bouncing ball and a non-linear oscillator, and implications regarding the wider applicability are discussed.
Resumo:
To determine if calcium scores (CS) could act as a more effective gatekeeper than Diamond Forrester (DF) in the assessment of patients with suspected coronary artery disease (CAD). A sub-study of the Cardiac CT for the Assessment of Chest Pain and Plaque (CAPP) study, a randomised control trial evaluating the cost-effectiveness of cardiac CT in symptomatic patients with stable chest pain. Stable pain was defined as troponin negative pain without symptoms of unstable angina. 250 patients undergoing cardiac CT had both DF scores and CS calculated, with the accuracy of both evaluated against CT coronary angiogram. Criteria given in UK national guidelines were compared. Of the 250 patients, 4 withdrew. 140 (57 %) patients were male. The mean DF was 47.8 and mean CS 172.5. Of the 144 patients with non-anginal pain 19.4 % had significant disease (>50 % stenosis). In general the DF over estimated the presence of CAD whereas the CS reclassified patients to lower risk groups, with 91 in the high risk DF category compared to 26 in the CS. Both receiver operating curve and McNemar Bowker test analysis suggested the DF was less accurate in the prediction of CAD compared to CS [Formula: see text] Projected downstream investigations were also calculated, with the cost per number of significant stenoses identified cheaper with the CS criteria. Patients with suspected stable CAD are more accurately risk stratified by CS compared to the traditional DF. CS was more successful in the prediction of significant stenosis and appears to be more effective at targeting clinical resources to those patients that are in need of them.
Resumo:
ObjectiveThe objective of this paper is to elucidate the role of specific cytokines in lupus (SLE) arthritis.MethodsFifty SLE and 40 RA patients had an ultrasound (US) scan of their hand as per standardized protocols. US scores were expressed per joint and as a total 'US activity' score, (sum of power Doppler (PD) and grey-scale synovial hypertrophy scores in all joints) and a total erosion score. SLE disease activity was assessed (BILAG and SELENA-SLEDAI). Plasma levels of IL-6, TNF-alpha and BLyS were measured using sandwich ELISA kits (Quantikine kits, R & D).ResultsOn the basis of the US results SLE patients were divided into three groups: erosive arthritis (n?=?20), non-erosive arthritis (n?=?18) and those with a normal US scan (n?=?12). Across the SLE groups plasma IL-6 levels correlated with CRP (p?
Resumo:
Objectives: To determine, by means of static fracture testing the effect of the tooth preparation design and the elastic modulus of the cement on the structural integrity of the cemented machined ceramic crown-tooth complex.
Methods: Human maxillary extracted premolar teeth were prepared for all-ceramic crowns using two preparation designs; a standard preparation in accordance with established protocols and a novel design with a flat occlusal design. All-ceramic feldspathic (Vita MK II) crowns were milled for all the preparations using a CAD/CAM system (CEREC-3). The machined all-ceramic crowns were resin bonded to the tooth structure using one of three cements with different elastic moduli: Super-Bond C&B, Rely X Unicem and Panavia F 2.0. The specimens were subjected to compressive force through a 4 mm diameter steel ball at a crosshead speed of 1 mm/min using a universal test machine (Loyds Instrument Model LRX.). The load at the fracture point was recorded for each specimen in Newtons (N). These values were compared to a control group of unprepared/unrestored teeth.
Results: There was a significant difference between the control group, with higher fracture strength, and the cemented samples regardless of the occlusal design and the type of resin cement. There was no significant difference in mean fracture load between the two designs of occlusal preparation using Super-Bond C&B. For the Rely X Unicem and Panavia F 2.0 cements, the proposed preparation design with a flat occlusal morphology provides a system with increased fracture strength.
Significance: The proposed novel flat design showed less dependency on the resin cement selection in relation to the fracture strength of the restored tooth. The choice of the cement resin, with respect to its modulus of elasticity, is more important in the anatomic design than in the flat design. © 2013 Academy of Dental Materials.
Resumo:
The surface modification of a mechanochemically prepared Ag/Al O catalyst compared with catalysts prepared by standard wet impregnated methods has been probed using two-dimensional T -T NMR correlations, HO temperature programmed desorption (TPD) and DRIFTS. The catalysts were examined for the selective catalytic reduction of NO using n-octane in the presence and absence of H. Higher activities were observed for the ball milled catalysts irrespective of whether H was added. This higher activity is thought to be related to the increased affinity of the catalyst surface towards the hydrocarbon relative to water, following mechanochemical preparation, resulting in higher concentrations of the hydrocarbon and lower concentrations of water at the surface. DRIFTS experiments demonstrated that surface isocyanate was formed significantly quicker and had a higher surface concentration in the case of the ball milled catalyst which has been correlated with the stronger interaction of the n-octane with the surface. This increased interaction may also be the cause of the reduced activation barrier measured for this catalyst compared with the wet impregnated system. The decreased interaction of water with the surface on ball milling is thought to reduce the effect of site blocking whilst still providing a sufficiently high surface concentration of water to enable effective hydrolysis of the isocyanate to form ammonia and, thereafter, N. This journal is © The Royal Society of Chemistry.
Resumo:
Resumo:
Although the use of ball milling to induce reactions between solids (mechanochemical synthesis) can provide lower-waste routes to chemical products by avoiding solvent during the reaction, there are further potential advantages in using one-pot multistep syntheses to avoid the use of bulk solvents for the purification of intermediates. We report here two-step syntheses involving formation of salen-type ligands from diamines and hydroxyaldehydes followed directly by reactions with metal salts to provide the corresponding metal complexes. Five salen-type ligands 2,2'-[1,2-ethanediylbis[(E)-nitrilomethylidyne]] bisphenol, ` salenH2', 1; 2,2'-[(+/-)-1,2-cyclohexanediylbis-[(E)-nitrilomethylidyne]] bis-phenol, 2; 2,2'-[1,2-phenylenebis( nitrilomethylidyne)]-bis-phenol, ` salphenH2' 3; 2-[[(2-aminophenyl) imino] methyl]-phenol, 4; 2,2'-[(+/-)-1,2-cyclohexanediylbis[(E)-nitrilomethylidyne]]-bis[4,6-bis(1,1-dimethylethyl)]-phenol, ` Jacobsen ligand', 5) were found to form readily in a shaker-type ball mill at 0.5 to 3 g scale from their corresponding diamine and aldehyde precursors. Although in some cases both starting materials were liquids, ball milling was still necessary to drive those reactions to completion because precipitation of the product and or intermediates rapidly gave in thick pastes which could not be stirred conventionally. The only ligand which required the addition of solvent was the Jacobsen ligand 5 which required 1.75 mol equivalents of methanol to go to completion. Ligands 1-5 were thus obtained directly in 30-60 minutes in their hydrated forms, due to the presence of water by-product, as free-flowing yellow powders which could be dried by heating to give analytically pure products. The one-armed salphen ligand 4 could also be obtained selectively by changing the reaction stoichiometry to 1 : 1. SalenH(2) 1 was explored for the onepot two-step synthesis of metal complexes. In particular, after in situ formation of the ligand by ball milling, metal salts (ZnO, Ni(OAc)2 center dot 4H(2)O or Cu(OAc)(2)center dot H2O) were added directly to the jar and milling continued for a further 30 minutes. Small amounts of methanol (0.4-1.1 mol equivalents) were needed for these reactions to run to completion. The corresponding metal complexes [M(salen)] (M = Zn, 6; Ni, 7; or Cu, 8) were thus obtained quantitatively after 30 minutes in hydrated form, and could be heated briefly to give analytically pure dehydrated products. The all-at-once ` tandem' synthesis of [Zn(salen)] 6 was also explored by milling ZnO, ethylene diamine and salicylaldehyde together in the appropriate mole ratio for 60 minutes. This approach also gave the target complex selectively with no solvent needing to be added. Overall, these syntheses were found to be highly efficient in terms of time and the in avoidance of bulk solvent both during the reaction and for the isolation of intermediates. The work demonstrates the applicability of mechanochemical synthesis to one-pot multi-step strategies.
Resumo:
The aluminum complex Alq(3) (q = 8-hydroxyquinolinate), which has important applications in organic light-emitting diode materials, is shown to be readily synthesized as a pure phase under solvent-free mechanochemical conditions from Al(OAc)(2)OH and 8-hydroxyquinoline by ball milling. The initial product of the mechanochemical synthesis is a novel acetic acid solvate of Alq(3), and the alpha polymorph of Alq(3) is obtained on subsequent heating/desolvation of this phase. The structure of the mechanochemically prepared acetic acid solvate of Alq(3) has been determined directly from powder X-ray diffraction data and is shown to be a different polymorph from the corresponding acetic acid solvate prepared by solution-state crystallization of Alq(3) from acetic acid. Significantly, the mechanochemical synthesis of Alq(3) is shown to be fully scalable across two orders of magnitude from 0.5 to 50 g scale. The Alq(3) sample obtained from the solvent-free mechanochemical synthesis is analytically pure and exhibits identical photoluminescence behavior to that of a sample prepared by the conventional synthetic route.