119 resultados para Artificial Reef
Resumo:
The origins of artificial neural networks are related to animal conditioning theory: both are forms of connectionist theory, which in turn derives from the empiricist philosophers' principle of association. The parallel between animal learning and neural nets suggests that interaction between them should benefit both sides.
Resumo:
In shallow waters, such as those found close to berth structures, the wash from a manoeuvring ship’s propeller can cause erosion of the seabed. This erosion can be increased if the wash intersects a berth structure. A number of researchers have undertaken model studies and used regression analysis to develop predictive relationships for the scouring action. This paper presents an experimental investigation with Artificial Neural Networks (ANN’s), used to analyse the results. The purpose of using ANN’s was to examine the prediction accuracy of the Networks in comparison with previous regression analysis methods. ANN’s were found to provide a more accurate method of predicting propeller wash scour than the equations presented by previous investigators.
Resumo:
Sensitive Artificial Listeners (SAL) are virtual dialogue partners based on audiovisual analysis and synthesis. Despite their very limited verbal understanding, they intend to engage the user in a conversation by paying attention to the user’s emotions and non- verbal expressions. The SAL characters have their own emotionally defined personality, and attempt to drag the user towards their dom- inant emotion through a combination of verbal and non-verbal ex- pression. The demonstrator shows the publicly available, fully au- tonomous SAL system.
Resumo:
Research has been undertaken to investigate the use of artificial neural network (ANN) techniques to improve the performance of a low bit-rate vector transform coder. Considerable improvements in the perceptual quality of the coded speech have been obtained. New ANN-based methods for vector quantiser (VQ) design and for the adaptive updating of VQ codebook are introduced for use in speech coding applications.
Resumo:
Frustration – the inability to simultaneously satisfy all interactions – occurs in a wide range of systems including neural networks, water ice and magnetic systems. An example of the latter is the so called spin-ice in pyrochlore materials [1] which have attracted a lot of interest not least due to the emergence of magnetic monopole defects when the ‘ice rules’ governing the local ordering breaks down [2]. However it is not possible to directly measure the frustrated property – the direction of the magnetic moments – in such spin ice systems with current experimental techniques. This problem can be solved by instead studying artificial spin-ice systems where the molecular magnetic moments are replaced by nanoscale ferromagnetic islands [3-8]. Two different arrangements of the ferromagnetic islands have been shown to exhibit spin ice behaviour: a square lattice maintaining four moments at each vertex [3,8] and the Kagome lattice which has only three moments per vertex but equivalent interactions between them [4-7]. Magnetic monopole defects have been observed in both types of lattices [7-8]. One of the challenges when studying these artificial spin-ice systems is that it is difficult to arrive at the fully demagnetised ground-state [6-8].
Here we present a study of the switching behaviour of building blocks of the Kagome lattice influenced by the termination of the lattice. Ferromagnetic islands of nominal size 1000 nm by 100 nm were fabricated in five island blocks using electron-beam lithography and lift-off techniques of evaporated 18 nm Permalloy (Ni80Fe20) films. Each block consists of a central island with four arms terminated by a different number and placement of ‘injection pads’, see Figure 1. The islands are single domain and magnetised along their long axis. The structures were grown on a 50 nm thick electron transparent silicon nitride membrane to allow TEM observation, which was back-coated with a 5 nm film of Au to prevent charge build-up during the TEM experiments.
To study the switching behaviour the sample was subjected to a magnetic field strong enough to magnetise all the blocks in one direction, see Figure 1. Each block obeys the Kagome lattice ‘ice-rules’ of “2-in, 1-out” or “1-in, 2-out” in this fully magnetised state. Fresnel mode Lorentz TEM images of the sample were then recorded as a magnetic field of increasing magnitude was applied in the opposite direction. While the Fresnel mode is normally used to image magnetic domain structures [9] for these types of samples it is possible to deduce the direction of the magnetisation from the Lorentz contrast [5]. All images were recorded at the same over-focus judged to give good Lorentz contrast.
The magnetisation was found to switch at different magnitudes of the applied field for nominally identical blocks. However, trends could still be identified: all the blocks with any injection pads, regardless of placement and number, switched the direction of the magnetisation of their central island at significantly smaller magnitudes of the applied magnetic field than the blocks without injection pads. It can therefore be concluded that the addition of an injection pad lowers the energy barrier to switching the connected island, acting as a nucleation site for monopole defects. In these five island blocks the defects immediately propagate through to the other side, but in a larger lattice the monopoles could potentially become trapped at a vertex and observed [10].
References
[1] M J Harris et al, Phys Rev Lett 79 (1997) p.2554.
[2] C Castelnovo, R Moessner and S L Sondhi, Nature 451 (2008) p. 42.
[3] R F Wang et al, Nature 439 (2006) 303.
[4] M Tanaka et al, Phys Rev B 73 (2006) 052411.
[5] Y Qi, T Brintlinger and J Cumings, Phys Rev B 77 (2008) 094418.
[6] E Mengotti et al, Phys Rev B 78 (2008) 144402.
[7] S Ladak et al, Nature Phys 6 (2010) 359.
[8] C Phatak et al, Phys Rev B 83 (2011) 174431.
[9] J N Chapman, J Phys D 17 (1984) 623.
[10] The authors gratefully acknowledge funding from the EPSRC under grant number EP/D063329/1.
Resumo:
Intertwining planar spirals arranged in doubly periodic arrays enables a substantially subwavelength response of the unit cell smaller than 1/40 of wavelength with large fractional bandwidths. These properties are important for application at low frequencies, conformal curved surfaces, or with compact radiators. It is shown that interleaving counter-wound spiral arms extended into adjacent unit cells dramatically increase the array equivalent capacitance while reducing the inductance. A coplanar waveguide (CPW) model has been developed to analytically estimate the equivalent capacitance and inductance of intertwined spiral array elements in terms of their geometrical parameters. The proposed CPW model is shown to provide an accurate prediction of the fundamental resonance frequency and can be instrumental in the design of the arrays for a specified frequency response. © 2012 IEEE.