100 resultados para Ambient Interface
Resumo:
Within the complex of deep, hypersaline anoxic lakes (DHALs) of the Mediterranean Ridge, we identified a new, unexplored DHAL and named it ‘Lake Kryos’ after a nearby depression. This lake is filled with magnesium chloride (MgCl2)-rich, athalassohaline brine (salinity > 470 practical salinity units), presumably formed by the dissolution of Messinian bischofite. Compared with the DHAL Discovery, it contains elevated concentrations of kosmotropic sodium and sulfate ions, which are capable of reducing the net chaotropicily of MgCl2-rich solutions. The brine of Lake Kryos may therefore be biologically permissive at MgCl2 concentrations previously considered incompatible with life. We characterized the microbiology of the seawater–Kryos brine interface and managed to recover mRNA from the 2.27–3.03 MMgCl2 layer (equivalent to 0.747–0.631 water activity), thereby expanding the established chaotropicity window-for-life. The primary bacterial taxa present there were Kebrit Deep Bacteria 1 candidate division and DHAL-specific group of organisms, distantly related toDesulfohalobium. Two euryarchaeal candidate divisions, Mediterranean Sea Brine Lakes group 1 and halophilic cluster 1, accounted for > 85% of the rRNA-containing archaeal clones derived from the 2.27–3.03 M MgCl2 layer, but were minority community-members in the overlying interface-layers. These findings shed light on the plausibility of life in highly chaotropic environments, geochemical windows for microbial extremophiles, and have implications for habitability elsewhere in the Solar System.
Resumo:
Depth-sensitive magnetic, structural and chemical characterization is important in the understanding and optimization of novel physical phenomena emerging at interfaces of transition metal oxide heterostructures. In a simultaneous approach we have used polarized neutron and resonant X-ray reflectometry to determine the magnetic profile across atomically sharp interfaces of ferromagnetic La0.67Sr0.33MnO3 / multiferroic BiFeO3 bi-layers with sub-nanometer resolution. In particular, the X-ray resonant magnetic reflectivity measurements at the Fe and Mn resonance edges allowed us to determine the element specific depth profile of the ferromagnetic moments in both the La0.67Sr0.33MnO3 and BiFeO3 layers. Our measurements indicate a magnetically diluted interface layer within the La0.67Sr0.33MnO3 layer, in contrast to previous observations on inversely deposited layers. Additional resonant X-ray reflection measurements indicate a region of an altered Mn- and O-content at the interface, with a thickness matching that of the magnetic diluted layer, as origin of the reduction of the magnetic moment.
Resumo:
Thin, oxidised Al films grown an one face of fused silica prisms are exposed. tinder ambient conditions, to single shots from an excimer laser operating at wavelength 248 nm. Preliminary characterisation of the films using attenuated total reflection yields optical and thickness data for the Al and Al oxide layers; this step facilitates the subsequent, accurate tuning of the excimer laser pulse to the: surface plasmon resonance at the Al/(oxide)/air interface and the calculation of the fluence actually absorbed by the thin film system. Ablation damage is characterised using scanning electron, and atomic force microscopy. When the laser pulse is incident, through the prism on the sample at less than critical angle, the damage features are molten in nature with small islands of sub-micrometer dimension much in evidence, a mechanism of film melt-through and subsegment blow-off due to the build up of vapour pressure at the substrate/film interface is appropriate. By contrast, when the optical input is surface plasmon mediated, predominately mechanical damage results with the film fragmenting into large flakes of dimensions on the order of 10 mu m. It is suggested that the ability of surface plasmons to transport energy leads to enhanced, preferential absorption of energy at defect sites causing stress throughout the film which exceeds the ultimate tensile stress for the film: this in turn leads to film break-up before melting can onset. (C) 1998 Elsevier Science B.V.
Resumo:
A randomly distributed multi-particle model considering the effects of particle/matrix interface and strengthening mechanisms introduced by the particles has been constructed. Particle shape, distribution, volume fraction and the particles/matrix interface due to the factors including element diffusion were considered in the model. The effects of strengthening mechanisms, caused by the introduction of particles on the mechanical properties of the composites, including grain refinement strengthening, dislocation strengthening and Orowan strengthening, are incorporated. In the model, the particles are assumed to have spheroidal shape, with uniform distribution of the centre, long axis length and inclination angle. The axis ratio follows a right half-normal distribution. Using Monte Carlo method, the location and shape parameters of the spheroids are randomly selected. The particle volume fraction is calculated using the area ratio of the spheroids. Then, the effects of particle/matrix interface and strengthening mechanism on the distribution of Mises stress and equivalent strain and the flow behaviour for the composites are discussed.
Resumo:
Spatial variability of conductivity in ceria is explored using scanning probe microscopy (SPM) with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO2. Data suggests the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor (MIEC) systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunneling barriers.
Resumo:
Chemically ordered B2 FeRh exhibits a remarkable antiferromagnetic-ferromagnetic phase transition that is first order. It thus shows phase coexistence, usually by proceeding though nucleation at random defect sites followed by propagation of phase boundary domain walls. The transition occurs at a temperature that can be varied by doping other metals onto the Rh site. We have taken advantage of this to yield control over the transition process by preparing an epilayer with oppositely directed doping gradients of Pd and Ir throughout its height, yielding a gradual transition that occurs between 350 K and 500 K. As the sample is heated, a horizontal antiferromagnetic-ferromagnetic phase boundary domain wall moves gradually up through the layer, its position controlled by the temperature. This mobile magnetic domain wall affects the magnetisation and resistivity of the layer in a way that can be controlled, and hence exploited, for novel device applications.
Resumo:
This paper outlines the importance of robust interface management for facilitating finite element analysis workflows. Topological equivalences between analysis model representations are identified and maintained in an editable and accessible manner. The model and its interfaces are automatically represented using an analysis-specific cellular decomposition of the design space. Rework of boundary conditions following changes to the design geometry or the analysis idealization can be minimized by tracking interface dependencies. Utilizing this information with the Simulation Intent specified by an analyst, automated decisions can be made to process the interface information required to rebuild analysis models. Through this work automated boundary condition application is realized within multi-component, multi-resolution and multi-fidelity analysis workflows.
Resumo:
Context. The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas.
Aims. Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. The cloud size is comparable to that created in recent laboratory experiments and such clouds may exist close to internal and external shocks of leptonic jets. The purpose of our study is to determine the prevalent instabilities, their ability to generate electromagnetic fields and the mechanism, by which the lepton micro-cloud transfers energy to the background plasma.
Methods. A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The latter consists of electrons with a temperature of 1 keV and immobile ions. The initially charge- and current neutral micro-cloud has a temperature of 100 keV and a side length of 2.5 plasma skin depths of the micro-cloud. The side length is given in the reference frame of the background plasma. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined at several times.
Results. A filamentation instability develops between the magnetic field carried by the micro-cloud and the background electrons. The electromagnetic fields, which grow from noise levels, redistribute the electrons and positrons within the cloud, which boosts the peak magnetic field amplitude. The current density and the moduli of the electromagnetic fields grow aperiodically in time and steadily along the direction that is anti-parallel to the cloud's velocity vector. The micro-cloud remains conjoined during the simulation. The instability induces an electrostatic wakefield in the background plasma.
Conclusions. Relativistic clouds of leptons can generate and amplify magnetic fields even if they have a microscopic size, which implies that the underlying processes can be studied in the laboratory. The interaction of the localized magnetic field and high-energy leptons will give rise to synchrotron jitter radiation. The wakefield in the background plasma dissipates the kinetic energy of the lepton cloud. Even the fastest lepton micro-clouds can be slowed down by this collisionless mechanism. Moderately fast charge- and current neutralized lepton micro-clouds will deposit their energy close to relativistic shocks and hence they do not constitute an energy loss mechanism for the shock.
Resumo:
RATIONALE: Epithelial remodelling in asthma is characterised by goblet cell hyperplasia and mucus hypersecretion for which no therapies exist. Differentiated bronchial air-liquid interface cultures from asthmatic children display high goblet cell numbers. Epidermal growth factor and its receptor have been implicated in goblet cell hyperplasia.
OBJECTIVES: We hypothesised that EGF removal or tyrphostin AG1478 treatment of differentiating air-liquid interface cultures from asthmatic children would result in a reduction of epithelial goblet cells and mucus secretion.
METHODS: In Aim 1 primary bronchial epithelial cells from non-asthmatic (n = 5) and asthmatic (n = 5) children were differentiated under EGF-positive (10ng/ml EGF) and EGF-negative culture conditions for 28 days. In Aim 2, cultures from a further group of asthmatic children (n = 5) were grown under tyrphostin AG1478, a tyrosine kinase inhibitor, conditions. All cultures were analysed for epithelial resistance, markers of differentiation using immunocytochemistry, ELISA for MUC5AC mucin secretion and qPCR for MUC5AC mRNA.
RESULTS: In cultures from asthmatic children the goblet cell number was reduced in the EGF negative group (p = 0.01). Tyrphostin AG1478 treatment of cultures from asthmatic children had significant reductions in goblet cells at 0.2μg/ml (p = 0.03) and 2μg/ml (p = 0.003) as well as mucus secretion at 2μg/ml (p = 0.04).
CONCLUSIONS: We have shown in this preliminary study that through EGF removal and tyrphostin AG1478 treatment the goblet cell number and mucus hypersecretion in differentiating air-liquid interface cultures from asthmatic children is significantly reduced. This further highlights the epidermal growth factor receptor as a potential therapeutic target to inhibit goblet cell hyperplasia and mucus hypersecretion in asthma.
Resumo:
There are a range of theoretical approaches which may inform the interface between child protection and adult mental health services. These theoretical perspectives tend to be focused on either child protection or mental health with no agreed integrating framework. The interface continues to be identified, in research, case management reviews and inquiry reports, as complex and problematic. This paper proposes that more positive, integrated approaches to service user engagement, risk assessment and management may lead to better outcomes in working with families experiencing parental mental health problems and child protection concerns. It is proposed that the recovery approach, increasingly used in mental health services, can inform the processes of engagement, assessment and intervention at the mental health and child protection interface. The article provides a critical overview of the recovery approach and compares it with approaches typifying interventions in child protection work to date. Relevant research and inquiries are also examined as a context for how to more effectively respond to cases where there are issues around parental mental health problems and child protection. The article concludes with case material to illustrate the potential application of the recovery approach to the interface between mental health and child protection services.
Resumo:
Electroless nickel composite coatings with silicon carbide, SiC, as reinforcing particles deposited with Ni–P onto aluminium alloy, LM24, having zincating as under layer were subjected to heat treatment using air furnace. The changes at the interface were investigated using scanning electron microscope (SEM) and energy dispersive X-ray (EDX) to probe the chemistry changes upon heat treatment. Microhardness tester with various loads using both Knoop and Vickers indenters was used to study the load effect clubbed with the influence of second phase particles on the coating at the vicinity of the interface. It was observed that zinc was absent at the interface after elevated temperature heat treatment at 400–500 °C. Precipitation of copper and nickel with a distinct demarcation (copper rich belt) along the coating interface was seen with irregular thickness of the order of 1 μm. Migration of copper from the bulk aluminium alloy could have been the factor. Brittleness of the coating was confirmed on heat treatment when indented with Vickers. However, in composite coating the propagation of the microcrack was stopped by the embedded particles but the microcracks continue in the matrix when not interrupted by second phase particles (SiC).
Resumo:
Surface behaviour is of paramount importance as failure and degradation tend to initiate from the surface. Electroless composite coating (NiP/SiC) was developed using SiC as reinforcing particles. As heat treatment plays a vital role in electroless nickel coating owing to the changes in microstructure, phase structure and mechanical properties, an insight at the interface changes in chemistry and micromechanical behaviour was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) and microindentation techniques. Corrosion performance was analysed using electrochemical impedance spectroscopy (EIS). Absence of zinc and migration of copper at the interface was detected. Brittleness and microcracks was seen long the interface when indenting at load of 500 gf (Vickers). Corrosion performance is weaker than particles free coating. However, a thin blanket of NiP could enhance the resistance to corrosive medium.