123 resultados para Adsorption isotherms
Resumo:
The advantage of using an available and abundant residual biomass, such as lignin, as a raw material for activated carbons is that it provides additional economical interest to the technical studies. In the current investigation, a more complete understanding of adsorption of Cr(VI) from aqueous systems onto H PO -acid activated lignin has been achieved via microcolumns, which were operated under various process conditions. The practice of using microcolumn is appropriate for defining the adsorption parameters and for screening a large number of potential adsorbents. The effects of solution pH (2-8), initial metal ion concentration (0.483-1.981 mmol·L ), flow rate (1.0-3.1 cm ·min ), ionic strength (0.01-0.30 mmol·L ) and adsorbent mass (0.11-0.465 g) on Cr(VI) adsorption were studied by assessing the microcolumn breakthrough curve. The microcolumn data were fitted by the Thomas model, the modified Dose model and the BDST model. As expected, the adsorption capacity increased with initial Cr(VI) concentration. High linear flow rates, pH values and ionic strength led to early breakthrough of Cr(VI). The model constants obtained in this study can be used for the design of pilot scale adsorption process. © 2012 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP).
Resumo:
Adsorption and desorption of hydrogen from nanoporous materials, such as activated carbon, is usually fully reversible. We have prepared nanoporous metal-organic framework materials with flexible linkers in which the pore openings, as characterized in the static structures, appear to be too small to allow H-2 to pass. We observe hysteresis in their adsorption and desorption kinetics above the supercritical temperature of H-2 that reflects the dynamical opening of the "windows" between pores. This behavior would allow H-2 to be adsorbed at high pressures but stored at lower pressures.
Resumo:
Formed by linking metals or metal clusters through organic linkers, metal-organic frameworks are a class of solids with structural and chemical properties that mark them out as candidates for many emerging gas storage, separation, catalysis and biomedical applications. Important features of these materials include their high porosity and their flexibility in response to chemical or physical stimuli. Here, a copper-based metal-organic framework has been prepared in which the starting linker (benzene-1,3,5-tricarboxylic acid) undergoes selective monoesterification during synthesis to produce a solid with two different channel systems, lined by hydrophilic and hydrophobic surfaces, respectively. The material reacts differently to gases or vapours of dissimilar chemistry, some stimulating subtle framework flexibility or showing kinetic adsorption effects. Adsorption can be switched between the two channels by judicious choice of the conditions. The monoesterified linker is recoverable in quantitative yield, demonstrating possible uses of metal-organic frameworks in molecular synthetic chemistry as 'protecting groups' to accomplish selective transformations that are difficult using standard chemistry techniques.
Resumo:
Metal organic frameworks (MOFs) are among the most exciting materials discovered recently, attracting particular attention for their gas-adsorption and -storage properties. Certain MOFs show considerable structural flexibility in response to various stimuli. Although there are several examples of 'breathing' MOFs, in which structural changes occur without any bond breaking, examples of transformations in which several bonds are broken and made are much rarer. In this paper we demonstrate how a flexible MOF, Cu-2(OH)(C8H3O7S)(H2O)center dot 2H(2)O, can be synthesized by careful choice of the organic linker ligand. The flexibility can be controlled by addition of a supplementary coordinating molecule, which increases the thermal stability of the solid sufficiently for direct imaging with electron microscopy to be possible. We also demonstrate that the MOF shows unprecedented low-pressure selectivity towards nitric oxide through a coordination-driven gating mechanism. The chemical control over these behaviours offers new possibilities for the synthesis of MOFs with unusual and potentially exploitable properties.
Resumo:
Two porous metal organic frameworks (MOFs), [M-2(C8H2O6)(H2O)(2)] center dot 8H(2)O (M = Co, Ni), perform exceptionally well for the adsorption, storage, and water-triggered delivery of the biologically important gas nitric oxide. Adsorption and powder X-ray diffraction studies indicate that each coordinatively unsaturated metal atom in the structure coordinates to one NO molecule. All of the stored gas is available for delivery even after the material has been stored for several months. The combination of extremely high adsorption capacity (similar to 7 mmol of NO/g of MOF) and good storage stability is ideal for the preparation of NO storage solids. However, most important is that the entire reservoir of stored gas is recoverable on contact with a simple trigger (moisture). The activity of the NO storage materials is proved in myography experiments showing that the NO-releasing MOFs cause relaxation of porcine arterial tissue.
Resumo:
Gas adsorption experiments have been carried out on a copper benzene tricarboxylate metal-organic framework material, HKUST-1. Hydrogen adsorption at 1 and 10 bar (both 77 K) gives an adsorption capacity of 11.16 mmol H-2 per g of HKUST-1 (22.7 mg g(-1), 2.27 wt %) at 1 bar and 18 mmol per g (36.28 mg g(-1), 3.6 wt %) at 10 bar. Adsorption of D-2 at 1 bar (77 K) is between 1.09 (at 1 bar) and 1.20(at < 100 mbar) times the H-2 values depending on the pressure, agreeing with the theoretical expectations. Gravimetric adsorption measurements of NO on HKUST-1 at 196 K (1 bar) gives a large adsorption capacity of similar to 9 mmol g(-1), which is significantly greater than any other adsorption capacity reported on a porous solid. At 298 K the adsorption capacity at 1 bar is just over 3 mmol g(-1). Infra red experiments show that the NO binds to the empty copper metal sites in HKUST-1. Chemiluminescence and platelet aggregometry experiments indicate that the amount of NO recovered on exposure of the resulting complex to water is enough to be biologically active, completely inhibiting platelet aggregation in platelet rich plasma.
Resumo:
In this study, the adsorption characteristics of two series of oxygen and nitrogen functionalized activated carbons were investigated. These series were a low nitrogen content(similar to 1 wt % daf) carbon series derived from coconut shell and a high nitrogen content (similar to 8 wt % daf) carbon series derived from polyacrylonitrile. In both series, the oxygen contents were varied over the range similar to 2-22 wt % daf. The porous structures of the functionalized activated carbons were characterized using N-2 (77 K) and CO2 (273 K) adsorption. Only minor changes in the porous structure were observed in both series. This allowed the effect of changes in functional group concentrations on metal ion adsorption to be studied without major influences due to differences in porous structure characteristics. The surface group characteristics were examined by Fourier transform infrared (FTIR) spectroscopy, acid/base titrations, and measurement of the point of zero charge (pH(PZC)). The adsorption of aqueous metal ion species, M2+(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M2+(aq) metal species adsorbed have a linear relationship for the carbons with pH(PZC) <= 4.15. Hydrolysis of metal species in solution may affect the adsorption of metal ion species and displacement of protons. In the case of basic carbons, both protons and metal ions are adsorbed on the carbons. The complex nature of competitive adsorption between the proton and metal ion species and the amphoteric character of carbon surfaces are discussed in relation to the mechanism of adsorption.
Resumo:
A commercially available coconut-shell-derived active carbon was oxidized with nitric acid, and both the original and oxidized active carbons were treated with ammonia at 1073 K to incorporate nitrogen functional groups into the carbon. An active carbon with very high nitrogen content (similar to9.4 wt % daf) was also prepared from a nitrogen-rich precursor, polyacrylonitrile (PAN). These nitrogen-rich carbons had points of zero charge (pH(pzc)) similar to H-type active carbons. X-ray absorption near-edge structure (XANES) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and temperature-programmed desorption (TPD) were used to characterize the nitrogen functional groups in the carbons. The nitrogen functional groups present on the carbon surface were pyridinic, pyrrolic (or indolic), and pyridonic structures. The adsorption of transition metal cations Cd2+, Ni2+, and Cu2+ from aqueous solution on the suite of active carbons showed that adsorption was markedly higher for carbons with nitrogen functional groups present on the surface than for carbons with similar pH(pzc) values. In contrast, the adsorption characteristics of Ca2+ from aqueous solution were similar for all the carbons studied. Flow microcalorimetry (FMC) studies showed that the enthalpies of adsorption of Cd2+(aq) on the active carbons with high nitrogen contents were much higher than for nitric acid oxidized carbons studied previously, which also had enhanced adsorption characteristics for metal ion species. The enthalpies of adsorption of Cu2+ were similar to those obtained for Cd2+ for specific active carbons. The nitrogen functional groups in the carbons act as surface coordination sites for the adsorption of transition metal ions from aqueous solution. The adsorption characteristics of these carbons are compared with those of oxidized carbons.
Resumo:
Zeolites exchanged with transition metal cations Co2+, Mn2+, Zn2+ and Cu2+ are capable of storing and delivering a large quantity of nitric oxide in a range of 1.2-2.7 mmolg(-1). The metal ion exchange impacts the pore volumes of zeolite FAU more significantly than LTA. The storage of NO mainly involves coordination of NO to metal cation sites. By exposing zeolites to a moisture atmosphere, the stored nitric oxide can be released. The NO release takes more than 2 hours for the NO concentration decreasing below similar to 5ppb in outlet gas. Its release rate can be controlled by tailoring zeolite frameworks and optimising release conditions.
Resumo:
Porous layered hybrid materials have been prepared by the reaction of organo-bisphosphonate ligands, 4-(4'-phosphonophenoxy)phenylphosphonic, 4,4'-biphenylenbisphosphonic and phenylphosphonic acids, with metal(IV) cations (Zr and Sn). Crystalline Zr(IV) and Sn(IV) layered bisphosphonates were also prepared, which were non-porous. The amorphous M(IV) bisphosphonates showed variable compositions and textural properties ranging from mainly mesoporous to highly microporous solids with BET surface areas varying from 300 to 480 m(2) g(-1), micropore volumes ranging 0.10-0.20 cm(3)/g, and narrow porous size distributions for some materials. N-2 isotherms suggest that Sn(IV) derivatives show a comparatively higher micropore contribution than the Zr(IV) analogous at least for the ether-bisphosphonate hybrids. Sn(IV) bisphosphonates exhibit high microporosities without the need of using harmful DMSO as solvent. If ether-bisphosphonic acid is partially replaced by less expensive phenylphosphonic ligand, porous products are also obtained. P-31 and F-17 MAS NMR and XPS data revealed the presence of hydrogen-phosphonate groups and small (F-, Cl- and OH-) anions, which act as spacer ligands within the inorganic layers, in these hybrid materials. The complexity of the inorganic layers is higher for the Sn(IV) bisphosphonates likely due to the larger amount of small bridging anions including fluorides. It is suggested that the presence of these small inorganic ligands may be a key factor influencing both, the interaction of the inorganic layer with the bisphosphonate groups, which bridge the inorganic layers, and the generation of internal voids within a given inorganic layer. Preliminary studies of gases adsorption (H-2 and NO) have been carried out for selected Sn(IV) bisphosphonates. The H-2 adsorption capacity at 77 K and 1 bar was low, 0.26 wt%, but the NO adsorption capacity at similar to 1 bar and 298 K was relatively high, 4.2 wt%. Moreover, the hysteresis in the NO isotherms is indicative of partial strong irreversible adsorption of NO. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Among microporous systems metal organic frameworks are considered promising materials for molecular adsorption. In this contribution infrared spectroscopy is successfully applied to highlight the positive role played by coordinatively unsaturated Cu2+ ions in HKUST-1, acting as specific interaction sites. A properly activated material, obtained after solvent removal, is characterized by a high fraction of coordinatively unsaturated Cu2+ ions acting as preferential adsorption sites that show specific activities towards some of the most common gaseous species (NO, CO2, CO, N-2 and H-2). From a temperature dependent IR study, it has been estimated that the H-2 adsorption energy is as high as 10 kJ mol(-1). A very complex spectral evolution has been observed upon lowering the temperature. A further peculiarity of this material is the fact that it promotes ortho-para conversion of the adsorbed H-2 species.
Resumo:
BiFeO3 thin films have been deposited on (111) SrTiO3 single crystal substrates by reactive molecular-beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth overpressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO3 to control stoichiometry. Four-circle x-ray diffraction reveals phase-pure, untwinned, epitaxial, (0001)-oriented films with rocking curve full width at half maximum values as narrow as 25 arc sec (0.007 degrees). Second harmonic generation polar plots combined with diffraction establish the crystallographic point group of these untwinned epitaxial films to be 3m at room temperature. (C) 2007 American Institute of Physics.
Resumo:
A new mesoporous carbon (MCSG60) was developed using an inexpensive commercial mesoporous silica gel as a template and sucrose as the carbon source. The surface area, porosity and density of the carbon were determined. The material possesses a high specific surface area and pore volume accessible for most typical aqueous pollutants. The adsorbent material was tested in a batch dye adsorption system. The behaviour of three reactive dyes adsorbed onto MCSG60 was evaluated (Naphthol Blue Black, NBB; Reactive Black 5, RB5; and Remazol Brilliant Blue R, RBBR). The maximum adsorption capacities obtained for the dyes were: 270. mg/g for NBB; 270. mg/g for RB5; and 280. mg/g for RBBR. Kinetic studies indicated that the adsorption process onto the mesoporous carbon was rapid and that equilibrium was reached in less than 1. h for all the dye systems investigated. Further batch experiments showed MCSG60 successfully adsorbed the dyes over a wide pH range and at low adsorbate concentration. The adsorption potential of MCSG60 for dye removal was further evaluated using a fixed-bed adsorption column. © 2013 Elsevier B.V.