130 resultados para Acc Synthase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

5-fluorouracil (5-FU) is widely used in the treatment of cancer. Over the past 20 years, increased understanding of the mechanism of action of 5-FU has led to the development of strategies that increase its anticancer activity. Despite these advances, drug resistance remains a significant limitation to the clinical use of 5-FU. Emerging technologies, such as DNA microarray profiling, have the potential to identify novel genes that are involved in mediating resistance to 5-FU. Such target genes might prove to be therapeutically valuable as new targets for chemotherapy, or as predictive biomarkers of response to 5-FU-based chemotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: We describe the presence of interstitial cells of Cajal (ICC) throughout the wall of the guinea pig bladder. MATERIALS AND METHODS: Bladders obtained from male guinea pigs were prepared for immunohistochemical investigations using various primary antibodies, including the specific ICC marker c-kit (Gibco BRL, Grand Island, New York). Enzymatically dispersed cells with a branched morphology were identified as ICC using anti-c-kit. They were loaded with fluo-4acetoxymethyl (Molecular Probes, Eugene, Oregon) and studied using confocal laser scanning microscopy. RESULTS: Anti-c-kit labeling demonstrated that ICC were oriented in parallel with the smooth muscle bundles that run diagonally throughout the bladder. Double labeling with anti-smooth muscle myosin (Sigma Chemical Co., St. Louis, Missouri) revealed that ICC were located on the boundary of smooth muscle bundles. When anti-c-kit was used in combination with the general neuronal antibody protein gene product 9.5 (Ultraclone Ltd., Isle of Wight, United Kingdom) or anti-neuronal nitric oxide synthase, it was noted that there was a close association between nerves and ICC. Enzymatic dissociation of cells from tissue pieces yielded a heterogeneous population of cells containing typical spindle-shaped smooth muscle cells and branched cells resembling ICC from other preparations. The latter could be identified immunohistochemically as ICC using anti-c-kit, whereas the majority of spindle-shaped cells were not Kit positive. Branched cells responded to the application of carbachol by firing Ca2+ waves and they were often spontaneously active. CONCLUSIONS: ICC are located on the boundary of smooth muscle bundles in the guinea pig bladder. They fire Ca2+ waves in response to cholinergic stimulation and can be spontaneously active, suggesting that they could act as pacemakers or intermediaries in the transmission of nerve signals to smooth muscle cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adrenomedullin may provide a compensatory mechanism to attenuate left ventricular hypertrophy (LVH). Nitric oxide synthase inhibition, induced by chronic administration of N(omega)-nitro-L-arginine methyl ester (L-NAME) to rats, induces cardiac hypertrophy in some, but not all cases; there are few reports of direct assessment of cardiomyocyte parameters. The objective was to characterize hypertrophic parameters in left (LV) and right ventricular (RV) cardiomyocytes after administration of L-NAME to rats for 8 wk and to determine whether adrenomedullin and its receptor components were upregulated. After treatment with L-NAME (20 and 50 mg x kg(-1) x day(-1)), compared with nontreated animals, 1) systolic blood pressure increased (by 34.2 and 104.9 mmHg), 2) heart weight-to-body wt ratio increased 24.1% at the higher dose (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adrenomedullin (AM) and intermedin (IMD; adrenomedulln-2) are vasodilator peptides related to calcitonin gene-related peptide (CGRP). The actions of these peptides are mediated by the calcitonin receptor-like receptor (CLR) in association with one of three receptor activity-modifying proteins. CGRP is selective for CLR/receptor activity modifying protein (RAMP)1, AM for CLR/RAMP2 and -3, and IMD acts at both CGRP and AM receptors. In a model of pressure overload induced by inhibition of nitric-oxide synthase, up-regulation of AM was observed previously in cardiomyocytes demonstrating a hypertrophic phenotype. The current objective was to examine the effects of blood pressure reduction on cardiomyocyte expression of AM and IMD and their receptor components. Nomega-nitro-L-arginine methyl ester (L-NAME) (35 mg/kg/day) was administered to rats for 8 weeks, with or without concurrent administration of hydralazine (50 mg/kg/day) and hydrochlorothiazide (7.5 mg/kg/day). In left ventricular cardiomyocytes from L-NAME-treated rats, increases (-fold) in mRNA expression were 1.6 (preproAM), 8.4 (preproIMD), 3.4 (CLR), 4.1 (RAMP1), 2.8 (RAMP2), and 4.4 (RAMP3). Hydralazine/hydrochlorothiazide normalized systolic blood pressure (BP) and abolished mRNA up-regulation of hypertrophic markers sk-alpha-actin and BNP and of preproAM, CLR, RAMP2, and RAMP3 but did not normalize cardiomyocyte width nor preproIMD or RAMP1 mRNA expression. The robust increase in IMD expression indicates an important role for this peptide in the cardiac pathology of this model but, unlike AM, IMD is not associated with pressure overload upon the myocardium. The concordance of IMD and RAMP1 up-regulation indicates a CGRP-type receptor action; considering also a lack of response to BP reduction, IMD may, like CGRP, have an anti-ischemic function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We found that engagement of beta 2 integrins on human neutrophils increased the levels of GTP-bound Rap1 and Rap2. Also, the activation of Rap1 was blocked by PP1, SU6656, LY294002, GF109203X, or BAPTA-AM, which indicates that the downstream signaling events in Rap1 activation involve Src tyrosine kinases, phosphoinositide 3-kinase, protein kinase C, and release of calcium. Surprisingly, the integrin-induced activation of Rap2 was not regulated by any of the signaling pathways mentioned above. However, we identified nitric oxide as the signaling molecule involved in beta 2 integrin-induced activation of Rap1 and Rap2. This was illustrated by the fact that engagement of beta 2 integrins increased the production of nitrite, a stable end-product of nitric oxide. Furthermore, pretreatment of neutrophils with N-monomethyl-L-arginine, or 1400W, which are inhibitors of inducible nitric-oxide synthase, blocked integrin-induced activation of Rap1 and Rap2. Similarly, Rp-8pCPT-cGMPS, an inhibitor of cGMP-dependent serine/threonine kinases, also blunted the integrin-induced activation of Rap GTPases. Also nitric oxide production and its downstream activation of cGMP-dependent serine/threonine kinases were essential for proper neutrophil adhesion by beta 2 integrins. Thus, we made the novel findings that beta 2 integrin engagement on human neutrophils triggers production of nitric oxide and its downstream signaling is essential for activation of Rap GTPases and neutrophil adhesion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To identify interstitial cells (ICs) in the wall of the rabbit urethra using antibodies to the Kit receptor, and to examine their location, morphology and relationship with nerves and smooth muscle cells (SMCs), as studies of enzymatically isolated cells from the rabbit urethra have established that there are specialized cells that show spontaneous electrical activity and have morphological properties of ICs. MATERIALS AND METHODS: Urethral tissues from rabbits were fixed, labelled with antibodies and examined with confocal microscopy. Some specimens were embedded in paraffin wax and processed for histology. Histological sections from the most proximal third and mid-third region of rabbit urethra were stained with Masson's Trichrome to show their cellular arrangement. RESULTS: Sections from both regions had outer longitudinal and inner circular layers of SM, and a lamina propria containing connective tissue and blood vessels; the lumen was lined with urothelial cells. The mid-third region had a more developed circular SM layer than the most-proximal samples, and had extensive inner longitudinal SM bundles in the lamina propria. Labelling with anti-Kit revealed immunopositive cells within the wall of the rabbit urethra, in the circular and longitudinal layers of the muscularis. Double-labelling with an antibody to SM myosin showed Kit-positive cells on the boundary of the SM bundles, orientated parallel to the axis of the bundles. Others were in spaces between the bundles and often made contact with each other. Kit-positive cells were either elongated, with several lateral branches, or stellate with branches coming from a central soma. Similar cells could be labelled with vimentin antibodies. Their relationship with intramural nerves was examined by double immunostaining with an anti-neurofilament antibody. There were frequent points of contact between Kit-positive cells and nerves, with similar findings in specimens double-immunostained with anti-neuronal nitric oxide synthase (nNOS). CONCLUSION: Kit-positive ICs were found within the SM layers of the rabbit urethra, in association with nerves, on the edge of SM bundles and in the interbundle spaces. The contact with nNOS-containing neurones might imply participation in the nitrergic inhibitory neurotransmission of the urethra. PMID: 17212607 [PubMed - indexed for MEDLINE]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Much research over the past two decades has focussed on understanding the complex interactions of nitric oxide (NO()) in both physiological and pathological processes. As with many other aspects of NO() biology, its precise role in tumour pathophysiology has been the cause of intense debate and we now know that it participates in numerous signalling pathways that are crucial to the malignant character of cancer. The available experimental evidence highlights contrasting pro- and anti-tumour effects of NO() expression, which appear to be reconciled by consideration of the concentrations involved. This review addresses the complexities of the role of NO() in cancer, whilst evaluating various experimental approaches to NO()-based cancer therapies, including both inhibition of nitric oxide synthases, and overexpression of NO() using donor drugs or nitric oxide synthase gene transfer. The evidence provided strongly supports a role for manipulation of tumour NO() either as a stand-alone therapy or in combination with conventional treatments to achieve a significant therapeutic gain.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transient receptor potential melastatin 8 (TRPM8) channel has been characterized as a cold and menthol receptor expressed in a subpopulation of sensory neurons but was recently identified in other tissues, including the respiratory tract, urinary system, and vasculature. Thus TRPM8 may play multiple functional roles, likely to be in a tissue- and activation state-dependent manner. We examined the TRPM8 channel presence in large arteries from rats and the functional consequences of their activation. We also aimed to examine whether these channels contribute to control of conscious human skin blood flow. TRPM8 mRNA and protein were detected in rat tail, femoral and mesenteric arteries, and thoracic aorta. This was confirmed in single isolated vascular myocytes by immunocytochemistry. Isometric contraction studies on endothelium-denuded relaxed rat vessels found small contractions on application of the TRPM8-specific agonist menthol (300 microM). However, both menthol and another agonist icilin (50 microM) caused relaxation of vessels precontracted with KCl (60 mM) or the alpha-adrenoceptor agonist phenylephrine (2 microM) and a reduction in sympathetic nerve-mediated contraction. These effects were antagonized by bromoenol lactone treatment, suggesting the involvement of Ca(2+)-independent phospholipase A(2) activation in TRPM8-mediated vasodilatation. In thoracic aorta with intact endothelium, menthol-induced inhibition of KCl-induced contraction was enhanced. This was unaltered by preincubation with either N(omega)-nitro-l-arginine methyl ester (l-NAME; 100 nM), a nitric oxide synthase inhibitor, or the ACh receptor antagonist atropine (1 microM). Application of menthol (3% solution, topical application) to skin caused increased blood flow in conscious humans, as measured by laser Doppler fluximetry. Vasodilatation was markedly reduced or abolished by prior application of l-NAME (passive application, 10 mM) or atropine (iontophoretic application, 100 nM, 30 s at 70 microA). We conclude that TRPM8 channels are present in rat artery vascular smooth muscle and on activation cause vasoconstriction or vasodilatation, dependent on previous vasomotor tone. TRPM8 channels may also contribute to human cutaneous vasculature control, likely with the involvement of additional neuronal mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The radiation-induced bystander effect (RIBE) increases the probability of cellular response and therefore has important implications for cancer risk assessment following low-dose irradiation and for the likelihood of secondary cancers after radiotherapy. However, our knowledge of bystander signaling factors, especially those having long half-lives, is still limited. The present study found that, when a fraction of cells within a glioblastoma population were individually irradiated with helium ions from a particle microbeam, the yield of micronuclei (MN) in the nontargeted cells was increased, but these bystander MN were eliminated by treating the cells with either aminoguanidine (an inhibitor of inducible nitric oxide (NO) synthase) or anti-transforming growth factor beta1 (anti-TGF-beta1), indicating that NO and TGF-beta1 are involved in the RIBE. Intracellular NO was detected in the bystander cells, and additional TGF-beta1 was detected in the medium from irradiated T98G cells, but it was diminished by aminoguanidine. Consistent with this, an NO donor, diethylamine nitric oxide (DEANO), induced TGF-beta1 generation in T98G cells. Conversely, treatment of cells with recombinant TGF-beta1 could also induce NO and MN in T98G cells. Treatment of T98G cells with anti-TGF-beta1 inhibited the NO production when only 1% of cells were targeted, but not when 100% of cells were targeted. Our results indicate that, downstream of radiation-induced NO, TGF-beta1 can be released from targeted T98G cells and plays a key role as a signaling factor in the RIBE by further inducing free radicals and DNA damage in the nontargeted bystander cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oestrogen produces diverse biological effects through binding to the oestrogen receptor (ER)(1). The ER is a steroid hormone nuclear receptor, which, when bound to oestrogen, modulates the transcriptional activity of target genes(2). Controversy exists, however, concerning whether ER has a role outside the nucleus(3), particularly in mediating the cardiovascular protective effects of oestrogen(4). Here we show that the ER isoform, ER alpha, binds in a ligand-dependent manner to the p85 alpha regulatory subunit of phosphatidylinositol-3-OH kinase (PI(3)K). Stimulation with oestrogen increases ER alpha-associated PI(3)K activity, leading to the activation of protein kinase B/Akt and endothelial nitric oxide synthase (eNOS). Recruitment and activation of PI(3)K by ligand-bound ERa are independent of gene transcription, do not involve phosphotyrosine adapter molecules or src-homology domains of p85 alpha, and extend to other steroid hormone receptors. Mice treated with oestrogen show increased eNOS activity and decreased vascular leukocyte accumulation after ischaemia and reperfusion injury. This vascular protective effect of oestrogen was abolished in the presence of PI(3)K or eNOS inhibitors. Our findings define a physiologically important non-nuclear oestrogen-signalling pathway involving the direct interaction of ERa with PI(3)K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:


Purpose. Disturbances to the cellular production of nitric oxide (NO) and superoxide (O2-) can have deleterious effects on retinal vascular integrity and angiogenic signaling. Dietary agents that could modulate the production of these signaling molecules from their likely enzymatic sources, endothelial nitric oxide synthase (eNOS) and NADPH oxidase, would therefore have a major beneficial effect on retinal vascular disease. The effect of ?-3 polyunsaturated fatty acids (PUFAs) on angiogenic signaling and NO/superoxide production in retinal microvascular endothelial cells (RMECs) was investigated.

Methods. Primary RMECs were treated with docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) for 48 hours. RMEC migration was determined by scratch-wound assay, proliferation by the incorporation of BrdU, and angiogenic sprouting using a three-dimensional model of in vitro angiogenesis. NO production was quantified by Griess assay, and phospho-eNOS accumulation and superoxide were measured using the fluorescent probe dihydroethidine. eNOS localization to caveolin-rich microdomains was determined by Western blot analysis after subfractionation on a linear sucrose gradient.

Results. DHA treatment increased nitrite and decreased superoxide production, which correlated with the displacement of eNOS from caveolar subdomains and colocalization with the negative regulator caveolin-1. In addition, both ?-3 PUFAs demonstrated reduced responsiveness to VEGF-stimulated superoxide and nitrite release and significantly impaired endothelial wound healing, proliferation, and angiogenic sprout formation.

Conclusions. DHA improves NO bioavailability, decreases O2- production, and blunts VEGF-mediated angiogenic signaling. These findings suggest a role for ?-3 PUFAs, particularly DHA, in maintaining vascular integrity while reducing pathologic retinal neovascularization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: Galegine and guanidine, originally isolated from Galega officinalis, led to the development of the biguanides. The weight-reducing effects of galegine have not previously been studied and the present investigation was undertaken to determine its mechanism(s) of action.

Experimental approach: Body weight and food intake were examined in mice. Glucose uptake and acetyl-CoA carboxylase activity were studied in 3T3-L1 adipocytes and L6 myotubes and AMP activated protein kinase (AMPK) activity was examined in cell lines. The gene expression of some enzymes involved in fat metabolism was examined in 3T3-L1 adipocytes.

Key results: Galegine administered in the diet reduced body weight in mice. Pair-feeding indicated that at least part of this effect was independent of reduced food intake. In 3T3-L1 adipocytes and L6 myotubes, galegine (50 µm-3 mm) stimulated glucose uptake. Galegine (1–300 µm) also reduced isoprenaline-mediated lipolysis in 3T3-L1 adipocytes and inhibited acetyl-CoA carboxylase activity in 3T3-L1 adipocytes and L6 myotubes. Galegine (500 µm) down-regulated genes concerned with fatty acid synthesis, including fatty acid synthase and its upstream regulator SREBP. Galegine (10 µm and above) produced a concentration-dependent activation of AMP activated protein kinase (AMPK) in H4IIE rat hepatoma, HEK293 human kidney cells, 3T3-L1 adipocytes and L6 myotubes.

Conclusions and implications: Activation of AMPK can explain many of the effects of galegine, including enhanced glucose uptake and inhibition of acetyl-CoA carboxylase. Inhibition of acetyl-CoA carboxylase both inhibits fatty acid synthesis and stimulates fatty acid oxidation, and this may to contribute to the in vivo effect of galegine on body weight.