161 resultados para 2507 Geofísica
Resumo:
The effect of the addition of acetonitrile on the solubility of carbon dioxide in an ionic liquid, the 1-ethyl-3- methylimidazolium bis(trifluoromethanesulfonyl)amide, [C(2)mim][NTf2], was studied experimentally at pressures close to atmospheric and as a function of temperature between 290 and 335 K. It was observed that the solubility of carbon dioxide decreases linearly with the mole fraction of acetonitrile from a value of 2.6 x 10(-2) in the pure ionic liquid at 303 K to a mole fraction of 1.3 x 10(-2) in the mixture [C(2)mim][NTf2] + CH3CN with x(CH3CN) = 0.77 at the same temperature. The gas solubility decreases with temperature, and the thermodynamic properties of solvation could be calculated. The vapor pressures of the [ C2mim][ NTf2] + CH3CN mixtures were measured in the same temperature range, and strong negative deviations from Raoult's law were obtained: up to 36% for a mixture with x(CH3CN) = 0.46 at 334 K. Negative excess molar volumes of approximately -1 cm(3) mol(-1) at equimolar composition could also be calculated from density measurements of the pure components and of the mixtures. These observations are confirmed by neutron diffraction studies and are compatible with the existence of strong ion-dipole interactions in the mixed liquid solvent.
Resumo:
(2006) Vol. 35 No. 8 317
Resumo:
The mixing of poly(methyl methacrylate) (PMMA) bone cement has been studied to develop methods for preparing a consistently high quality cement. A novel droplet test experimental procedure was developed that characterised the wetting characteristics involved in bone cement mixing. Using this technique it was established that increased wetting occurred by mixing bone cement at a lower temperature (-28 degreesC) than normal mixing at room temperature.
Resumo:
Preparation of cellulose-polyamine composite films and beads, which provide high loading of primary amines on the surface allowing direct one-step bioconjugation of active species, is reported using an ionic liquid (IL) dissolution and regeneration process. Films and bead architectures were prepared and used as immobilization supports for laccase as a model system demonstrating the applicability of this approach. Performance of these materials, compared to commercially available products, has been assessed using millimeter-sized beads of the composites and the lipase-catalyzed transesterification of ethyl butyrate.
Resumo:
Poly(ethylene glycol)-based aqueous biphasic systems (PEG-ABSs) have been investigated as tunable reaction media, in the example presented here, to control the oxidation of cyclohexene to adipic acid with hydrogen peroxide. The production of adipic acid was found to increase from the monophasic to the biphasic regimes, was greatest at short tie-line lengths (close to the system's critical point), and demonstrates how control of the ABS media, through changes in system composition, PEG, salt, and tie-line length, can be used to readily tune and control reactivity and product isolation in these aqueous biphasic reactive extraction systems. Challenges in using this system, including possible oxidation reactions of the PEG-OH end groups, are also discussed.
Resumo:
A new method for introducing enzymes into cellulosic matrixes which can be formed into membranes, films, or beads has been developed using a cellulose-in-ionic-liquid dissolution and regeneration process. Initial results on the formation of thin cellulose films incorporating dispersed laccase indicate that active enzyme-encapsulated films can be prepared using this methodology and that precoating the enzyme with a second. hydrophobic ionic liquid prior to dispersion in the cellulose/ionic liquid solution can provide an increase in enzyme activity relative to that of untreated films, presumably by providing a stabilizing microenvironment for the enzyme.
Resumo:
portfolio and undergraduate students have suggested that a teachingportfolio may have a benefit for educators in higher education as a means to providerelevancy and focus to their teaching.Design. The objectives of the review are to evaluate how a teaching portfolio assistseducators in teaching and learning; to evaluate the effects of maintaining a teachingportfolio for educators in relation to personal development; to explore the type ofportfolio used; to determine whether a teaching portfolio is perceived more beneficialfor various grades and professional types; and to determine any motivatingfactors or workplace incentives behind its implementation and completion. A searchof the following databases will be made MEDLINE, CINAHL, BREI, ERIC andAUEI. The review will follow the Joanna Briggs Institute guidance for systematicreviews of quantitative and qualitative research.Conclusion. The review will offer clarity and direction on the use of teachingportfolios, for educators, policymakers, supervisory managers and researchers involvedin further and higher education.
Resumo:
The ability of carbon nanotubes (CNTs) to reinforce and enhance the electrical conductivity of polymer matrices is a function of both the aspect ratio and surface chemistry of the CNTs. Hitherto, due to the variability in MWCNT synthesis methods it has not been possible to study the effect of MWCNT aspect ratio and functionality on polymer composite properties. This paper was the first to report the correlation between MWCNT aspect ratio and functionality on the formation of electrical and rheological percolated networks. Furthermore, the fundamental ballistic conductance of MWCNTs made using arc discharge and chemical vapour deposition techniques was reported.
Resumo:
This article describes the results of a comprehensive investigation to determine the link between process parameters and observed wall thickness output for the plug-assisted thermoforming process. The overall objective of the work was to systematically investigate the process parameters that may be adjusted during production to control the wall thickness distribution of parts manufactured by plug-assisted thermoforming. The parameters investigated were the sheet temperature, plug temperature, plug speed, plug displacement, plug shape, and air pressure. As well as quantifying the effects of each parameter on the wall thickness distribution, a further aim of the work was to improve the understanding of the physical mechanisms of deformation of the sheet during the different stages of the process. The process parameters shown to have the greatest effect on experimentally determined wall thickness distribution were the plug displacement, sheet temperature, plug temperature, and plug shape. It is proposed that during the plug-assisted thermoforming of polystyrene the temperature dependent friction between the plug and sheet surface was the most important factor in determining product wall thickness distribution, whereas heat transfer was shown to play a less important role. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers
Resumo:
The three-dimensional (3D) weaving process offers the ability to tailor the mechanical properties via design of the weave architecture. One repeat of the 3D woven fabric is represented by the unit cell. The model accepts basic weaver and material manufacturer data as inputs in order to calculate the geometric characteristics of the 3D woven unit cell. The specific weave architecture manufactured and subsequently modelled had an angle interlock type binding configuration. The modelled result was shown to have a close approximation compared to the experimentally measured values and highlighted the importance of the representation of the binder tow path.
Resumo:
This article investigates the damage imparted on load-bearing carbon fibers during the 3D weaving process and the subsequent compaction behavior of 3D woven textile preforms. The 3D multi-layer reinforcements were manufactured on a textile loom with few mechanical modifications to produce preforms with fibers orientated in the warp, weft, and through-the-thickness directions. Tensile tests were conducted on three types of commercially available carbon fibers, 12k HTA, 6k HTS, and 3k HTS in an attempt to quantify the effect of fiber damage induced during the 3D weaving process on the mechanical and physical performance of the fiber tows in the woven composite. The tests were conducted on fiber tows sampled from different locations in the manufacturing process from the bobbin, through the creel and loom mechanism, to the final woven fabric. Mechanical and physical testing were then conducted to quantify the tow geometry, orientation and the effect of compaction during manufacture of two styles of 3D woven composite by vacuumassisted resin transfer molding (VaRTM).
Resumo:
An analytical modeling approach for the prediction of the geometric characteristics of five-dimensional (5D) woven composites has been formulated. The model is driven by readily available data including the weaving parameters and constituent material properties. The new model calculates the individual proportions of fiber in each direction, areal density, overall fiber volume fraction, and laminate thickness. This information is useful for the engineer in the design and manufacture of 5D woven composites. In addition the present model outputs the mathematical definition of the 5D woven composite unit cell, which could be implemented as the geometric input for a downstream analytical model that is capable of predicting the elastic stiffness of 5D woven composites. Input parameters have been sourced from existing published work and the subsequent predictions made by the model are compared with the available experimental data on 5D woven composites.