106 resultados para 070707 Veterinary Microbiology (excl. Virology)
Resumo:
The World Health Organisation (WHO) has set regional elimination goals for Measles (MV) eradication to be achieved by 2020 or earlier. A major question is whether an opportunity for veterinary virus infection of humans may arise when MV is eradicated and if vaccination is discontinued. Lessons have been learned from animal to human virus transmission i.e. human immunodeficiency virus (HIV) and more recently from severe acute respiratory syndrome (SARS) and avian influenza virus infections. We are therefore alerted to the risk of zoonosis from the veterinary morbilliviruses. In this review the evidence from viral genomics, animal studies and cell culture experiments will be explored to evaluate the possibility of cross infection of humans with these viruses.
Resumo:
A review of medical records of 45 of 53 hospitalised patients with positive cultures for CTX-M type ESBL-producing Escherichia coli between 01 January and 31 May 2004 was conducted. The mean age of the population studied was 73.1 (+/-14.6) years and the majority (55.6%) had been under the care of the internal medicine or elderly care service. In the majority (77.8%) of instances the isolate was attributed to a clinical infection rather than colonisation and the commonest clinical specimen to yield the organism was urine, which was positive in 57.8% of patients. Acquisition of the organism was categorised as nosocomial in 68.9% of patients; in this subgroup, the median duration of inpatient stay prior to recovery of the organism was 24 (range 3-240) days. Haemodialysis-dependence was the most common of the comorbidities evaluated. The mean number of antibiotics prescribed per patient in the 30 days prior to first isolation of the organism was 1.7 (range 0-4). Furthermore, the mean number of antibiotic-days exposure per patient during this period was 13.9 (range 0-48). The most frequently received class of antibiotic was beta-lactam/beta-lactamase inhibitor combinations. Of 35 infections, 26 (74.2%) were successfully treated. Overall 12 patients with infection died (34.3%); attributable mortality was presumed in seven (20%).
Resumo:
1. To describe the epidemiology of peritonsillar abscess disease in Northern Ireland. 2. To describe the impact of the nature of microbiological sampling on culture results.
Resumo:
Objective: To describe the epidemiology of Candida bloodstream infections (BSI) in Northern Ireland. Methods: Retrospective collation of data relating to all clinically significant BSI in a university teaching hospital, which had been recorded prospectively, between 1984 and 2000. Results: One hundred and forty five episodes of candidaemia occurred in 144 patients (of mean age 56.6 years). The contribution of Candida spp. towards all significant BSI increased from 2.00% to 2.5%. C. albicans was the most frequently isolated species, however, its incidence fell from 70% to 53% during the study period. The greatest increase in incidence was seen with C. glabrata which was the most common non-albicans species. Twenty-nine per cent of isolates occurred in patients from an intensive care unit and, surprisingly, a further 25.5% occurred in patients from a surgical service. Conclusion: There appears to be several subtle differences in the epidemiology of candidal BSI between Northern Ireland and other countries. © 2002 The British Infection Society.
Resumo:
We present the case of a 47-year-old immunocompetent patient with clinical evidence of pulmonary mycobacterial disease which was found to be due to Mycobacterium triplex. This novel organism is an uncommon, emerging, pathogen for which few reports of clinical infection exist in the medical literature. © 2002 The British Infection Society.
Resumo:
Objectives: To describe the species distribution and antifungal susceptibility trends for documented episodes of candidemia at the Royal Hospitals, Belfast, 2001-2006. Methods: Laboratory-based retrospective observational study of all episodes of candidemia. Results: There were 151 episodes of candidemia. The species recovered were: 96 C. albicans; 26 C. glabrata; 18 C. parapsilosis; five C. tropicalis; four C. guilliermondii; one C. famata and one C. dubliniensis. We separated the data into two periods 2001-2003 and 2004-2006; contrary to the findings of other investigators, there was a notable trends toward increasing frequency of C. albicans and decreasing frequency of non-albicans species over time. Although the proportion of C. albicans, C. parapsilosis and C. tropicalis isolates susceptible to fluconazole was unchanged over time, a trend of decreased susceptibility of C. glabrata to fluconazole was noted over the six-year period. Overall, 73% and 7.7% of C. glabrata isolates had susceptible-dose-dependent and resistant phenotypes, respectively. The percentage of C. glabrata isolates susceptible to fluconazole (MIC
Resumo:
The aim of the present study was to describe the practice of central venous catheter (CVC) removal and outcomes of catheter-related bloodstream infection (CR-BSI) in adult haematology patients. Patients were identified retrospectively according to diagnosis coding of inpatient episodes and evaluated when, on examination of medical records, there had been evidence of sepsis with strong clinical suspicion that the source was the CVC. Demographic and bacteriological data, as well as therapeutic measures and clinical outcomes, were recorded. One hundred and three patient episodes were evaluated. The most frequent type of CVC was the Hickman catheter and the most frequently isolated pathogen was coagulase-negative staphylococci. Twenty-five percent of episodes were managed with catheter removal. Treatment failure, defined as recurrence of infection within 90 days or mortality attributed to sepsis within 30 days, occurred significantly more frequently in the group managed without catheter removal (52.5% versus 4%, P
Resumo:
GC-MS data on veterinary drug residues in bovine urine are used for controlling the illegal practice of fattening cattle. According to current detection criteria, peak patterns of preferably four ions should agree within 10 or 20% from a corresponding standard pattern. These criteria are rigid, rather arbitrary and do not match daily practice. A new model, based on multivariate modeling of log peak abundance ratios, provides a theoretical basis for the identification of analytes and optimizes the balance between the avoidance of false positives and false negatives. The performance of the model is demonstrated on data provided by five laboratories, each supplying GC-MS measurements on the detection of clenbuterol, dienestrol and 19 beta-nortestosterone in urine. The proposed model shows a better performance than confirmation by using the current criteria and provides a statistical basis for inspection criteria in terms of error probabilities.
Resumo:
Anthelmintic drugs are widely used for treatment of parasitic worms in livestock, but little is known about the stability of their residues in food under conventional cooking conditions. As part of the European Commissionfunded research project ProSafeBeef, cattle were medicated with commercially available anthelmintic preparations, comprising 11 active ingredients (corresponding to 21 marker residues). Incurred meat and liver were cooked by roasting (40 min at 190°C) or shallow frying (muscle 8-12 min, liver 14-19 min) in a domestic kitchen. Raw and cooked tissues and expressed juices were analysed using a novel multi-residue dispersive solid-phase extraction method (QuEChERS) coupled with ultra-performance liquid chromatography-tandem mass spectrometry. After correction for sample weight changes during cooking, no major losses were observed for residues of oxyclozanide, clorsulon, closantel, ivermectin, albendazole, mebendazole or fenbendazole. However, significant losses were observed for nitroxynil (78% in fried muscle, 96% in roast muscle), levamisole (11% in fried muscle, 42% in fried liver), rafoxanide (17% in fried muscle, 18% in roast muscle) and triclabendazole (23% in fried liver, 47% in roast muscle). Migration of residues from muscle into expressed cooking juices varied between drugs, constituting 0% to 17% (levamisole) of total residues remaining after cooking. With the exception of nitroxynil, residues of anthelmintic drugs were generally resistant to degradation during roasting and shallow frying. Conventional cooking cannot, therefore, be considered a safeguard against ingestion of residues of anthelmintic veterinary drugs in beef. © 2011 Taylor & Francis.
Resumo:
Measles remains a significant childhood disease, and is associated with a transient immune suppression. Paradoxically, measles virus (MV) infection also induces robust MV-specific immune responses. Current hypotheses for the mechanism underlying measles immune suppression focus on functional impairment of lymphocytes or antigen-presenting cells, caused by infection with or exposure to MV. We have generated stable recombinant MVs that express enhanced green fluorescent protein, and remain virulent in non-human primates. By performing a comprehensive study of virological, immunological, hematological and histopathological observations made in animals euthanized at different time points after MV infection, we developed a model explaining measles immune suppression which fits with the "measles paradox". Here we show that MV preferentially infects CD45RA - memory T-lymphocytes and follicular B-lymphocytes, resulting in high infection levels in these populations. After the peak of viremia MV-infected lymphocytes were cleared within days, followed by immune activation and lymph node enlargement. During this period tuberculin-specific T-lymphocyte responses disappeared, whilst strong MV-specific T-lymphocyte responses emerged. Histopathological analysis of lymphoid tissues showed lymphocyte depletion in the B- and T-cell areas in the absence of apoptotic cells, paralleled by infiltration of T-lymphocytes into B-cell follicles and reappearance of proliferating cells. Our findings indicate an immune-mediated clearance of MV-infected CD45RA - memory T-lymphocytes and follicular B-lymphocytes, which causes temporary immunological amnesia. The rapid oligoclonal expansion of MV-specific lymphocytes and bystander cells masks this depletion, explaining the short duration of measles lymphopenia yet long duration of immune suppression. © 2012 de Vries et al.
Resumo:
Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode) that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs) form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i) Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii) Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii) migration rate increases in Gp-flp-32-silenced worms; (iv) the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v) a novel putative Gp-flp-32 receptor (Gp-flp-32R) is expressed in G. pallida; and, (vi) Gp-flp-32R silenced worms also display an increase in migration rate. This work demonstrates that Gp30 flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida, and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R). This is the first functional characterisation of a parasitic nematode FLP-GPCR. © 2013 Atkinson et al.
Resumo:
The NF-kB transcriptional factor plays a key role governing the activation of immune responses. Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by lacking an early in?ammatory response. Recently, we have demonstrated that Klebsiella antagonizes the activation of NF-kB via the deubiquitinase CYLD. In this work, by applying a high-throughput siRNA gain-of-function screen interrogating the human kinome, we identi?ed 17 kinases that when targeted by siRNA restored IL-1b-dependent NF-kB translocation in infected cells. Further characterization revealed that K. pneumoniae activates an EGF receptor (EGFR)- phosphatidylinositol 3-OH kinase (PI3K)–AKT–PAK4–ERK–GSK3b signalling pathway to attenuate the cytokine-dependent nuclear translocation of NF-kB. Our data also revealed that CYLD is a downstream effector of K. pneumoniae-induced EGFR–
PI3K–AKT–PAK4–ERK–GSK3b signalling pathway. Our efforts to identify the bacterial factor(s) responsible for EGFR activation demonstrate that a capsule (CPS) mutant did not activate EGFR hence
suggesting that CPS could mediate the activation of EGFR. Supporting this notion, puri?ed CPS did activate EGFR as well as the EGFR-dependent PI3K–AKT–PAK4–ERK–GSK3b signalling pathway. CPS-mediated EGFR activation was dependent on a TLR4–MyD88–c-SRC-dependent pathway. Several promising drugs have been developed to antagonize this cascade. We propose that agents targeting this signalling pathway might provide selective alternatives for the management of K. pneumoniae pneumonias.
Resumo:
Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS) lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3'-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo(2)-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV)-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the reduced activation of the LPS receptor by a LpxR-dependent deacylated LPS.
Resumo:
In recent years, the Infectious Diseases Society of America has highlighted a faction of antibiotic-resistant bacteria (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) - acronymically dubbed 'the ESKAPE pathogens' - capable of 'escaping' the biocidal action of antibiotics and mutually representing new paradigms in pathogenesis, transmission and resistance. This review aims to consolidate clinically relevant background information on the ESKAPE pathogens and provide a contemporary summary of bacterial resistance, alongside pertinent microbiological considerations necessary to face the mounting threat of antimicrobial resistance.
Resumo:
Increases in food production and the ever-present threat of food contamination from microbiological and chemical sources have led the food industry and regulators to pursue rapid, inexpensive methods of analysis to safeguard the health and safety of the consumer. Although sophisticated techniques such as chromatography and spectrometry provide more accurate and conclusive results, screening tests allow a much higher throughput of samples at a lower cost and with less operator training, so larger numbers of samples can be analysed. Biosensors combine a biological recognition element (enzyme, antibody, receptor) with a transducer to produce a measurable signal proportional to the extent of interaction between the recognition element and the analyte. The different uses of the biosensing instrumentation available today are extremely varied, with food analysis as an emerging and growing application. The advantages offered by biosensors over other screening methods such as radioimmunoassay, enzyme-linked immunosorbent assay, fluorescence immunoassay and luminescence immunoassay, with respect to food analysis, include automation, improved reproducibility, speed of analysis and real-time analysis. This article will provide a brief footing in history before reviewing the latest developments in biosensor applications for analysis of food contaminants (January 2007 to December 2010), focusing on the detection of pathogens, toxins, pesticides and veterinary drug residues by biosensors, with emphasis on articles showing data in food matrices. The main areas of development common to these groups of contaminants include multiplexing, the ability to simultaneously analyse a sample for more than one contaminant and portability. Biosensors currently have an important role in food safety; further advances in the technology, reagents and sample handling will surely reinforce this position.