93 resultados para viscosity and rheological


Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this study it has been demonstrated that mixtures of two solid drugs, ibuprofen and methyl nicotinate, with different but complementary pharmacological activities and which exist as a single liquid phase over a wide composition range at skin temperature, can be formulated as o/w emulsions without the use of an additional hydrophobic carrier. These novel dual drug systems provided significantly enhanced in vitro penetration rates through a model lipophilic barrier membrane compared to conventional individual formulations of each active. Thus, for ibuprofen, drug penetration flux enhancements of three- and 10-fold were observed when compared to an aqueous ibuprofen suspension and a commercial alcohol-based ibuprofen formulation, respectively. Methyl nicotinate penetration rates were shown to be similar for aqueous gels and emulsified systems. Mechanisms explaining these observations are proposed. Novel dual drug formulations of ibuprofen and methyl nicotinate, formulated within the liquid range at skin temperature, were investigated by oscillatory rheology and texture profile analysis. demonstrating the effects of drug and viscosity enhancer concentrations, and disperse phase type upon the rheological, mechanical and drug penetration properties of these systems. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to mathematically characterize the effects of defined experimental parameters (probe speed and the ratio of the probe diameter to the diameter of sample container) on the textural/mechanical properties of model gel systems. In addition, this study examined the applicability of dimensional analysis for the rheological interpretation of textural data in terms of shear stress and rate of shear. Aqueous gels (pH 7) were prepared containing 15% w/w poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone) (PVP) (0, 3, 6, or 9% w/w). Texture profile analysis (TPA) was performed using a Stable Micro Systems texture analyzer (model TA-XT 2; Surrey, UK) in which an analytical probe was twice compressed into each formulation to a defined depth (15 mm) and at defined rates (1, 3, 5, 8, and 10 mm s-1), allowing a delay period (15 s) between the end of the first and beginning of the second compressions. Flow rheograms were performed using a Carri-Med CSL2-100 rheometer (TA Instruments, Surrey, UK) with parallel plate geometry under controlled shearing stresses at 20.0°?±?0.1°C. All formulations exhibited pseudoplastic flow with no thixotropy. Increasing concentrations of PVP significantly increased formulation hardness, compressibility, adhesiveness, and consistency. Increased hardness, compressibility, and consistency were ascribed to enhanced polymeric entanglements, thereby increasing the resistance to deformation. Increasing probe speed increased formulation hardness in a linear manner, because of the effects of probe speed on probe displacement and surface area. The relationship between formulation hardness and probe displacement was linear and was dependent on probe speed. Furthermore, the proportionality constant (gel strength) increased as a function of PVP concentration. The relationship between formulation hardness and diameter ratio was biphasic and was statistically defined by two linear relationships relating to diameter ratios from 0 to 0.4 and from 0.4 to 0.563. The dramatically increased hardness, associated with diameter ratios in excess of 0.4, was accredited to boundary effects, that is, the effect of the container wall on product flow. Using dimensional analysis, the hardness and probe displacement in TPA were mathematically transformed into corresponding rheological parameters, namely shearing stress and rate of shear, thereby allowing the application of the power law (??=?k?n) to textural data. Importantly, the consistencies (k) of the formulations, calculated using transformed textural data, were statistically similar to those obtained using flow rheometry. In conclusion, this study has, firstly, characterized the relationships between textural data and two key instrumental parameters in TPA and, secondly, described a method by which rheological information may be derived using this technique. This will enable a greater application of TPA for the rheological characterization of pharmaceutical gels and, in addition, will enable efficient interpretation of textural data under different experimental parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The viscosity ? for eighteen binary mixtures cyclopentane + cyclohexane and + cyclooctane; cyclohexane + cycloheptane, + cyclooctane, + methylcyclohexane, + n-hexane, + n-heptane, + n-octane, + i-octane, + benzene, + toluene, + ethylbenzene, + p-xylene, and + propylbenzene; methylcyclohexane + n-hexane, + i-octane, and + benzene; and cyclooctane + benzene have been reported at 303.15 K over the entire range of composition. The viscosity deviations ?? and excess Gibbs energy of activation ?G*E of viscous flow based on Eyring's theory have been calculated. The effects of molecular sizes and shapes of the component molecules and of interaction energy in the mixture have been discussed. The viscosity data have been correlated with the equations of Grunberg and Nissan, Hind, McLaughlin and Ubbelohde, Tamura and Kurata, Katti and Chaudhri, McAllister, Heric and Brewer, and of Auslaender.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This investigation describes the formulation and characterization of theologically structured vehicles (RSVs) designed for improved drug delivery to the vagina. Interactive, multicomponent, polymeric platforms were manufactured containing hydroxyethylcellulose (HEC, 5% w/w) polyvinylpyrrolidone (PVP, 4% w/w), Pluronic (PL, 0 or 10% w/w), and either polycarbophil (PC, 3% w/w) or poly(methylvinylether-co-maleic anhydride) (Gantrez S97, 3% w/w) as a mucoadhesive agent. The rheological (torsional and dynamic), mechanical (compressional), and mucoadhesive properties were characterized and shown to be dependent upon the mucoadhesive agent used and the inclusion/exclusion of PL. The dynamic theological properties of the gel platforms were also assessed following dilution with simulated vaginal fluid (to mimic in vivo dilution). RSVs containing PC were more rheologically structured than comparator formulations containing GAN. This trend was also reflected in formulation hardness, compressibility, consistency, and syringeability. Moreover, formulations containing PL (10% w/w) were more theologically structured than formulations devoid of PL. Dilution with simulated vaginal fluids significantly decreased rheological structure, although RSVs still retained a highly elastic stnicture (G' > G '' and tan delta <1). Furthermore, RSVs exhibited sustained drug release properties that were shown to be dependent upon their rheological structure. It is considered that these semisolid drug delivery systems may be useful as site-retentive platforms for the sustained delivery of therapeutic agents to the vagina.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examined the rheological/mucoadhesive properties of poly (acrylic acid) PAA organogels as platforms for drug delivery to the oral cavity. Organogels were prepared using PAA (3%, 5%, 10% w/w) dissolved in ethylene glycol (EG), propylene glycol (PG), 1,3-propylene glycol (1,3-PG), 1,5-propanediol (1,5-PD), polyethylene glycol 400 (PEG 400), or glycerol. All organogels exhibited pseudoplastic flow. The increase in storage (G') and loss (G '') moduli of organogels as a function of frequency was minimal, G '' was greater than G '' (at all frequencies), and the loss tangent <1, indicative of gel behavior. Organogels prepared using EG, PG, and 1,3-propanediol (1,3-PD) exhibited similar flow/viscoelastic properties. Enhanced rheological structuring was associated with organogels prepared using glycerol (in particular) and PEG 400 due to their interaction with adjacent carboxylic acid groups on each chain and on adjacent chains. All organogels (with the exception of 1,5-PD) exhibited greater network structure than aqueous PAA gels. Organogel mucoadhesion increased with polymer concentration. Greatest mucoadhesion was associated with glycerol-based formulations, whereas aqueous PAA gels exhibited the lowest mucoadhesion. The enhanced network structure and the excellent mucoadhesive properties of these organogels, both of which may be engineered through choice of polymer concentration/solvent type, may be clinically useful for the delivery of drugs to the oral cavity.