101 resultados para urine
Resumo:
Molecularly imprinted polymers (MIPs) selective for scopolamine were produced using hyoscyamine (a close structural analogue) as template molecule. The produced polymers were used as media for solid-phase extraction, exhibiting selective binding properties for the analyte from biological samples. Human and calf urine and serum were processed on the MIP under various extraction protocols. The best performance was observed after loading the analyte in aqueous environment facilitating retention on the MIP by non-selective hydrophobic interactions. The MIPs were subsequently washed using an optimised solvent system to enable selective desorption of the analyte. Other related and non-related compounds were accessed to evaluate molecular recognition properties. Recoveries of up to 79% were achieved for the analyte of interest from biological samples.
Resumo:
Fusarium mycotoxins are frequent contaminants of cereals in many world regions, and are suggested risk factors for various acute and chronic human diseases. To date a lack of exposure tools has restricted epidemiological studies of the potential health effects. Recently established exposure biomarkers for deoxynivalenol (DON) and fumonisins are now available and here a pilot biomarker survey of 110 women (aged 39 to 72 years) from Golestan, northern Iran was conducted on samples collected at one time point during August-September 2007. Urinary DON and DON-glucuronide combined were detected frequently (79/110, 72%), mean 1.3 ng DON/ml urine, range not detected (nd)-6.5 ng/ml; mean creatinine adjusted levels were 1.5 ng DON/mg creatinine, range nd-7.1 ng/mg). Neither urinary de-epoxy DON (DOM-1) and DOM-1 glucuronide combined, nor urinary fumonisin B-1 were detected. This study is the first reported biomarker based exposure assessment of DON and fumonisins in this region. Overall DON exposure at this time point appears modest compared to other world regions where data are available.
Resumo:
Background: The consumption of maize highly contaminated with carcinogenic fumonisins has been linked to high oesophageal cancer rates. The aim of this study was to validate a urinary fumonisin B-1 (UFB1) biomarker as a measure of fumonisin exposure and to investigate the reduction in exposure following a simple and culturally acceptable intervention.
Methods: At baseline home-grown maize, maize-based porridge, and first-void urine samples were collected from female participants (n = 22), following their traditional food practices in Centane, South Africa. During intervention the participants were trained to recognize and remove visibly infected kernels, and to wash the remaining kernels. Participants consumed the porridge prepared from the sorted and washed maize on each day of the two-day intervention. Porridge, maize, and urine samples were collected for FB1 analyses.
Results: The geometric mean (95% confidence interval) for FB1 exposure based on porridge (dry weight) consumption at baseline and following intervention was 4.84 (2.87-8.14) and 1.87 (1.40-2.51) mg FB1/kg body weight/day, respectively, (62% reduction, P < 0.05). UFB1C, UFB1 normalized for creatinine, was reduced from 470 (295-750) at baseline to 279 (202-386) pg/mg creatinine following intervention (41% reduction, P = 0.06). The UFB1C biomarker was positively correlated with FB1 intake at the individual level (r - 0.4972, P < 0.01). Urinary excretion of FB1 was estimated to be 0.075% (0.054%-0.104%) of the FB1 intake.
Conclusion: UFB1 reflects individual FB1 exposure and thus represents a valuable biomarker for future fumonisin risk assessment.
Impact: The simple intervention method, hand sorting and washing, could positively impact on food safety and health in communities exposed to fumonisins. Cancer Epidemiol Biomarkers Prev; 20(3); 483-9. (C)2011 AACR.
Resumo:
Fumonisins are mycotoxins produced by Fusarium spp. and commonly contaminate maize and maize products worldwide. Fumonisins are rodent carcinogens and have been associated with human esophageal cancer. However, the lack of a valid exposure biomarker has hindered both the assessment of human exposure and the evaluation of disease risk. A sensitive liquid chromatography-mass spectrometry method to measure urinary fumonisin B1 (FB1) following extraction on Oasis MAX cartridges was established and applied to urine samples from women in a cohort recruited in Morelos County, Mexico. Urinary FB1 was compared with dietary information on tortilla consumption. FB1 recovery in spiked samples averaged 94% as judged by deuterium-labeled FB1 internal standard. Urinary FB1 was determined in 75 samples from women selected based on low, medium, or high consumption of maize-based tortillas. The geometric mean (95% confidence interval) of urinary FB1 was 35.0 (18.8-65.2), 63.1 (36.8-108.2), and 147.4 (87.6-248.0) pg/mL and the frequency of samples above the detection limit (set at 20 pg FB1/mL urine) was 45%, 80%, and 96% for the low, medium, and high groups, respectively. Women with high intake had a 3-fold higher average FB1 levels compared with the "low intake" group (F = 7.3; P = 0.0015). Urinary FB1 was correlated with maize intake (P-trend = 0.001); the correlation remained significant after adjusting for age, education, and place of residence. This study suggests that measurement of urinary FB1 is sufficiently sensitive for fumonisin exposure assessment in human populations and could be a valuable tool in investigating the associated health effects of exposure.
Resumo:
The evaluation of exposure to aflatoxins (AF) by measurement of the level of contamination in food is hampered due to the heterogeneous distribution of AF in food. Therefore, an alternative is to estimate the exposure using specific biological markers (biomarkers) based on an understanding of the metabolism of the compound. For AF, these include aflatoxin-N-7-guanine in the urine, or AFB(1)-albumin (AF-alb) in the blood. This study assessed the level of exposure to AF in Brazilian individuals using a biomarker approach, i.e. the AF-alb adducts. Blood samples were collected from urban residents (n=50; aged 18-52) in June 1999, at the Blood Center of Antonio Carlos de Camargo Hospital, Sao Paulo, Brazil. AF-alb adduct levels were determined, by ELISA following serum albumin extraction and digestion. AF-alb adducts were detected in 31/50 (62%) samples [range 0-57.3 pg AFB(1)-lys adducts/mg of blood albumin (pg/mg)]. The mean level of positives was 14.9 pg/mg and males had the two highest levels measured (57.1 and 57.3 pg/mg). There was no correlation with age or profession. This is the first study of Brazilian, or indeed South American, individuals that has determined exposure to AF at the individual level using a biomarker approach. These levels are similar to those observed in the Philippines. These data warrant further investigation of both the sources and consequences of exposure to this potent toxin in Brazil.
Resumo:
BACKGROUND: Deoxynivalenol (DON) is a toxic fungal metabolite that frequently contaminates cereal crops. DON is toxic to animals, but the effects on humans are poorly understood, in part because exposure estimates are of limited precision.
OBJECTIVES: In this study we used the U.K. adult National Diet and Nutrition Survey to compare 24-hr urinary DON excretion with cereal intake.
METHODS: One hundred subjects were identified for each of the following cereal consumption groups: low (mean, 107 g cereal/day; range, 88-125), medium (mean, 179 g/day; range, 162-195) and high (mean, 300 g/day, range, 276-325). DON was analyzed in 24-hr urine samples by liquid chromatography mass spectrometry after purification on immunoaffinity columns.
RESULTS: DON was detected in 296 of 300 (98.7%) urine samples. Cereal intake was significantly associated with urinary DON (P < 0.0005), with the geometric mean urinary levels being 6.55 mu g DON/day [95% confidence interval (CI), 5.71-7-531; 9.63 mu g/day (95% Cl, 8.39-11.05); and 13.24 mu g/day (95% Cl, 11.54-15.19) for low-, medium-, and high-intake groups, respectively. In multivariable analysis, wholemeal bread (p < 0.0005), white bread (p < 0.0005), "other" bread (p < 0.0005), buns/cakes (p = 0.003), high-fiber breakfast cereal (p = 0.016), and pasta (p = 0.017) were significantly associated with urinary DON. Wholemeal bread was associated with the greatest percent increase in urinary DON per unit of consumption, but white bread contributed approximately twice as much as wholemeal bread to the urinary DON levels because it was consumed in higher amounts.
CONCLUSION: The majority of adults in the United Kingdom appear to be exposed to DON, and on the basis of the urinary levels, we estimate that some individuals may exceed the European Union (EU) recommended maximum tolerable daily intake of 1,000 ng DON/kg (bw). This exposure biomarker will be a valuable toot for biomonitoring as part of surveillance strategies and in etiologic studies of DON and human disease risk.
Resumo:
Exposure assessment is a critical part of epidemiological studies into the effect of mycotoxins on human health. Whilst exposure assessment can be made by estimating the quantity of ingested toxins from food analysis and questionnaire data, the use of biological markers (biomarkers) of exposure can provide a more accurate measure of individual level of exposure in reflecting the internal dose. Biomarkers of exposure can include the excreted toxin or its metabolites, as well as the products of interaction between the toxin and macromolecules such as protein and DNA. Samples in which biomarkers may be analysed include urine, blood, other body fluids and tissues, with urine and blood being the most accessible for human studies. Here we describe the development of biomarkers of exposure for the assessment of three important mycotoxins; aflatoxin, fumonisin and deoxynivalenol. A number of different biomarkers and methods have been developed that can be applied to human population studies, and these approaches are reviewed in the context of their application to molecular epidemiology research.
Resumo:
OBJECTIVE: To test whether simvastatin improves physiological and biological outcomes in patients undergoing esophagectomy.
BACKGROUND: One-lung ventilation during esophagectomy is associated with inflammation, alveolar epithelial and systemic endothelial injury, and the development of acute lung injury (ALI). Statins that modify many of the underlying processes are a potential therapy to prevent ALI.
METHODS: We conducted a randomized double-blind placebo-controlled trial in patients undergoing esophagectomy. Patients received simvastatin 80 mg or placebo enterally for 4 days preoperatively and 7 days postoperatively. The primary end point was pulmonary dead space (Vd/Vt) at 6 hours after esophagectomy or before extubation. Inflammation was assessed by plasma cytokines and intraoperative exhaled breath condensate pH; alveolar type 1 epithelial injury was assessed by plasma receptor for advanced glycation end products and systemic endothelial injury by the urine albumin-creatinine ratio.
RESULTS: Thirty-nine patients were randomized; 8 patients did not undergo surgery and were excluded. Fifteen patients received simvastatin and 16 received placebo. There was no difference in Vd/Vt or other physiological outcomes. Simvastatin resulted in a significant decrease in plasma MCP-1 on day 3 and reduced exhaled breath condensate acidification. Plasma receptor for advanced glycation end products was significantly lower in the simvastatin-treated group, as was the urine albumin-creatinine ratio on day 7 postsurgery. ALI developed in 4 patients in the placebo group and no patients in the simvastatin group although this difference was not statistically significant (P = 0.1).
CONCLUSIONS: In this proof of concept study, pretreatment with simvastatin in esophagectomy decreased biomarkers of inflammation as well as pulmonary epithelial and systemic endothelial injury.
Resumo:
BACKGROUND: Antibiotics are frequently prescribed for older adults who reside in long-term care facilities. A substantial proportion of antibiotic use in this setting is inappropriate. Antibiotics are often prescribed for asymptomatic bacteriuria, a condition for which randomized trials of antibiotic therapy indicate no benefit and in fact harm. This proposal describes a randomized trial of diagnostic and therapeutic algorithms to reduce the use of antibiotics in residents of long-term care facilities. METHODS: In this on-going study, 22 nursing homes have been randomized to either use of algorithms (11 nursing homes) or to usual practise (11 nursing homes). The algorithms describe signs and symptoms for which it would be appropriate to send urine cultures or to prescribe antibiotics. The algorithms are introduced by inservicing nursing staff and by conducting one-on-one sessions for physicians using case-scenarios. The primary outcome of the study is courses of antibiotics per 1000 resident days. Secondary outcomes include urine cultures sent and antibiotic courses for urinary indications. Focus groups and semi-structured interviews with key informants will be used to assess the process of implementation and to identify key factors for sustainability.
Resumo:
Canadians are living longer, and older persons are making up a larger share of the population (14% in 2006, projected to rise to 20% by 2021). The Canadian Longitudinal Study on Aging (CLSA) is a national longitudinal study of adult development and aging that will recruit 50,000 Canadians aged 45 to 85 years of age and follow them for at least 20 years. All participants will provide a common set of information concerning many aspects of health and aging, and 30,000 will undergo an additional in-depth examination coupled with the donation of biological specimens (blood and urine). The CLSA will become a rich data source for the study of the complex interrelationship among the biological, physical, psychosocial, and societal factors that affect healthy aging. © 2009 Canadian Association on Gerontology.
Resumo:
Objectives: This article examines the views of nursing staff and administrators in long-term care facilities (LTCFs) regarding a clinical pathway for managing urinary tract infections (UTIs) in LTCF residents. Design: A qualitative (case study) design was used. Setting: Data were collected from 8 LTCFs in southern Ontario and 2 in Iowa enrolled in a larger randomized controlled trial of clinical pathway for managing UTIs in LTCF residents, conducted between September 2001 and March 2003. The clinical pathway, designed to more effectively identify, diagnose, and treat UTIs, and reduce inappropriate antibiotics use for asymptomatic UTIs, introduced 2 decision tools to determine when to order a urine culture and initiate antibiotic treatment for suspected UTIs. Participants: We conducted 19 individual interviews with administrators and 10 focus groups with 52 nurses. Findings: Nurses generally thought that the pathways were well developed and easy to use, and administrators believed they were an important educational resource. Barriers to their use varied by group-initial lack of buy-in from nurses (medical directors), additional work (directors of nursing), and the need to change the protocol to exclude certain residents based on prior health conditions and/or pressure from physicians or families (nurses). Conclusions: Both administrators and staff, once familiar with a new clinical protocol to improve UTI management in LTCFs, generally supported its use. © 2007 American Medical Directors Association.
Resumo:
Molecularly Imprinted Polymers (MIPs) against imiquimod, a highly potent immune response modifier used in the treatment of skin cancer, were synthesised using a template analogue strategy and were compared with imprints of the drug itself. An investigation of the complexation between the functional monomer and the template analogue revealed an association constant of 1,376 ± 122 M-1, significantly higher than previously reported values for similar systems. The binding characteristics of the synthesised imprinted polymers were evaluated and extremely strong binding for imiquimod was observed while imprinting factors as high as 17 were calculated. When applied as sorbents in solid-phase extraction of imiquimod from aqueous, urine and blood serum samples, clean extracts and recoveries up to 95% were achieved, and it is concluded that while imiquimod imprints exhibited higher capacity for the drug, template analogue imprints are more selective. The results obtained suggest potential applications of imiquimod imprints as sorbents in rapid extraction and monitoring of undesirable systemic release of the drug.
Resumo:
Toasting friends and family with realgar wines and painting children's foreheads and limbs with the leftover realgar/alcohol slurries is an important customary ritual during the Dragon Boat Festival (DBF); a Chinese national holiday and ancient feast day celebrated throughout Asia. Realgar is an arsenic sulfide mineral, and source of highly toxic inorganic arsenic. Despite the long history of realgar use during the DBF, associated risk to human health by arsenic ingestion or percutaneous adsorption is unknown. To address this urine samples were collected from a cohort of volunteers who were partaking in the DBF festivities. The total concentration of arsenic in the wine consumed was 70 mg L(-1) with all the arsenic found to be inorganic. Total arsenic concentrations in adult urine reached a maximum of ca. 550 mu g L(-1) (mean 220.2 mu g L(-1)) after 16 h post-ingestion of realgar wine, while face painting caused arsenic levels in children's urine to soar to 100 mu g L(-1) (mean 85.3 mu g L(-1)) 40 h after the initial paint application. The average concentration of inorganic arsenic in the urine of realgar wine drinkers on average doubled 16 h after drinking, although this was not permanent and levels subsided after 28 h. As would be expected in young children, the proportions of organic arsenic in the urine remained high throughout the 88-h monitoring period. However, even when arsenic concentrations in the urine peaked at 40 h after paint application, concentrations in the urine only declined slightly thereafter, suggesting pronounced longer term dermal accumulation and penetration of arsenic. Drinking wines blended with realgar or using realgar based paints on children does result in the significant absorption of arsenic and therefore presents a potentially serious and currently unquantified health risk. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Biomarkers are conventionally defined as "biological molecules that represent health and disease states." They typically are measured in readily available body fluids (blood or urine), lie outside the causal pathway, are able to detect subclinical disease, and are used to monitor clinical and subclinical disease burden and response to treatments. Biomarkers can be "direct" endpoints of the disease itself, or "indirect" or surrogate endpoints. New technologies (such as metabolomics, proteomics, genomics) bring a wealth of opportunity to develop new biomarkers. Other new technologies enable the development of nonmolecular, functional, or biophysical tissue-based biomarkers. Diabetes mellitus is a complex disease affecting almost every tissue and organ system, with metabolic ramifications extending far beyond impaired glucose metabolism. Biomarkers may reflect the presence and severity of hyperglycemia (ie, diabetes itself) or the presence and severity of the vascular complications of diabetes. Illustrative examples are considered in this brief review. In blood, hemoglobin A1c (HbA1c) may be considered as a biomarker for the presence and severity of hyperglycemia, implying diabetes or prediabetes, or, over time, as a "biomarker for a risk factor," ie, hyperglycemia as a risk factor for diabetic retinopathy, nephropathy, and other vascular complications of diabetes. In tissues, glycation and oxidative stress resulting from hyperglycemia and dyslipidemia lead to widespread modification of biomolecules by advanced glycation end products (AGEs). Some of these altered species may serve as biomarkers, whereas others may lie in the causal pathway for vascular damage. New noninvasive technologies can detect tissue damage mediated by AGE formation: these include indirect measures such as pulse wave analysis (a marker of vascular dysfunction) and more direct markers such as skin autofluorescence (a marker of long-term accumulation of AGEs). In the future, we can be optimistic that new blood and tissue-based biomarkers will enable the detection, prevention, and treatment of diabetes and its complications long before overt disease develops.
Resumo:
S-(2-Succinyl)cysteine (2SC) has been identified as a chemical modification in plasma proteins, in the non-mercaptalbumin fraction of human plasma albumin, in human skin collagen, and in rat skeletal muscle proteins and urine. 2SC increases in human skin collagen with age and is increased in muscle protein of diabetic vs. control rats. The concentration of 2SC in skin collagen and muscle protein correlated strongly with that of the advanced glycation/lipoxidation end-product (AGE/ALE), N(epsilon)-(carboxymethyl)lysine (CML). 2SC is formed by a Michael addition reaction of cysteine sulfhydryl groups with fumarate at physiological pH. Fumarate, but not succinate, inactivates the sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase in vitro, in concert with formation of 2SC. 2SC is the first example of spontaneous chemical modification of protein by a metabolic intermediate in the Krebs cycle. These observations identify fumarate as an endogenous electrophile and suggest a role for fumarate in regulation of metabolism.