63 resultados para twin deficits


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE:

This study investigated the heritability of lens thickness (LT) and relative lens thickness (LT/axial length, rLT) measured by Lenstar among Chinese children and adolescents in the Guangzhou Twin Eye study.

METHODS:

Twins aged 8 to 22 years were enrolled from the Guangzhou Twin Registry. A series of LT and axial length (AL) measurements using the Lenstar were taken for each twin. Zygosity was confirmed by genotyping in all same-sex twin pairs. Heritability was assessed by structural variance component genetic modeling, after adjustment for age and sex with the Mx program.

RESULTS:

Seven hundred sixty-eight twin pairs (482 monozygotic [MZ] and 286 dizygotic [DZ] twins) were available for data analysis. The mean (standard deviation) LT and rLT were 3.45 (0.18) mm and 0.142 (0.01), respectively. The intraclass correlation coefficients (ICCs) for LT were 0.90 for the MZ and 0.39 for the DZ twins; and those for rLT were 0.90 for the MZ and 0.40 for the DZ twins, respectively. The best-fitting model yielded 89.5% (95% CI: 87.8%-91.0%) of additive genetic effects and 10.5% (95% CI: 9.0%-12.2%) of unique environmental effects for LT, and 89.3% (95% CI: 89.2%-89.3%) of additive genetic effects and 10.7% (95% CI: 10.7%-11.4%) of unique environmental effects for rLT.

CONCLUSIONS:

This study confirms that the LT in young healthy subjects may be mainly affected by additive genetic factors. High heritability remains even when the data are corrected for the influence of AL with the use of rLT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionizing radiation causes degeneration of myelin, the insulating sheaths of neuronal axons, leading to neurological impairment. As radiation research on the central nervous system has predominantly focused on neurons, with few studies addressing the role of glial cells, we have focused our present research on identifying the latent effects of single/ fractionated -low dose of low/ high energy radiation on the role of base excision repair protein Apurinic Endonuclease-1, in the rat spinal cords oligodendrocyte progenitor cells’ differentiation. Apurinic endonuclease-1 is predominantly upregulated in response to oxidative stress by low- energy radiation, and previous studies show significant induction of Apurinic Endonuclease-1 in neurons and astrocytes. Our studies show for the first time, that fractionation of protons cause latent damage to spinal cord architecture while fractionation of HZE (28Si) induce increase in APE1 with single dose, which then decreased with fractionation. The oligodendrocyte progenitor cells differentiation was skewed with increase in immature oligodendrocytes and astrocytes, which likely cause the observed decrease in white matter, increased neuro-inflammation, together leading to the observed significant cognitive defects.