66 resultados para trip generation
Resumo:
The efficient generation of parallel code for multi-processor environments, is a large and complicated issue. Attempts to address this problem have always resulted in significant input from users. Because of constraints on user knowledge and time, the automation of the process is a promising and practically important research area. In recent years heuristic approaches have been used to capture available knowledge and make it available for the parallelisation process. Here, the introduction of a novel approach of neural network techniques is combined with an expert system technique to enhance the availability of knowledge to aid in the automatic generation of parallel code.
Resumo:
Glucagonlike peptide-1(7 36)amide (GLP-1) is an incretin hormone with therapeutic potential for type 2 diabetes. Rapid removal of the Nterminal dipeptide, His7-Ala8, by the ubiquitous enzyme dipeptidyl peptidase IV (DPP IV) curtails the biological activity of GLP-1. Chemical modifications or substitutions of GLP-1 at His7 or Ala8 improve resistance to DPPIV action, but this often reduces potency. Little attention has focused on the metabolic stability and functional activity of GLP-1 analogues with amino acid substitution at Glu9, adjacent to the DPP IV cleavage site. We generated three novel Glu9-substituted GLP-1 analogues, (Pro9)GLP-1, (Phe9)GLP-1 and (Tyr9)GLP-1 and show for the first time that Glu9 of GLP-1 is important in DPP IV degradation, since replacing this amino acid, particularly with proline, substantially reduced susceptibility to degradation. All three novel GLP-1 analogues showed similar or slightly enhanced insulinotropic activity compared with native GLP-1 despite a moderate 4 10-fold reduction in receptor binding and cAMP generation. In addition, (Pro9)GLP 1 showed significant ability to moderate the plasma glucose excursion and increase circulating insulin concentrations in severely insulin resistant obese diabetic (ob/ob) mice. These observations indicate the importance of Glu9 for the biological activity of GLP-1 and susceptibility to DPP IVmediated degradation.