70 resultados para surface oxygen complexes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ab initio total energy calculations within a density functional theory framework have been performed for CO and atomic oxygen chemisorbed on the Pt(111) surface. Optimised geometries and chemisorption energies for CO and O on four high-symmetry sites, namely the top, bridge, fee hollow and hcp hollow sites, are presented, the coverage in all cases being 0.25 ML. The differences in CO adsorption energies between these sites are found to be small, suggesting that the potential energy surface for CO diffusion across Pt(111) is relatively flat. The 5 sigma and 2 pi molecular orbitals of CO are found to contribute to bonding with the metal. Some mixing of the 4 sigma and 1 pi molecular orbitals with metal states is also observed. For atomic oxygen, the most stable adsorption site is found to be the fee hollow site, followed in decreasing order of stability by the hcp hollow and bridge sites, with the top site being the least stable. The differences in chemisorption energies between sites for oxygen are larger than in the case of CO, suggesting a higher barrier to diffusion for atomic oxygen. The co-adsorption of CO and O has also been investigated. Calculated chemisorption energies for CO on an O/fcc-precovered surface show that of the available chemisorption sites, the top site at the oxygen atom's next-nearest neighbour surface metal atom is the most stable, with the other four sites calculated bring at least 0.29 eV less stable. The trend of CO site stability in the coadsorption system is explained in terms of a 'bonding competition' model. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ab initio total energy calculations within the Density Functional Theory framework were carried out for Pt(111), Pt(111)-p(2x2)-CO, Pt(111)-p(2x2)-O, and Pt(111)-p(2x2)-(CO+O) to provide an insight into the interaction between CO and O on metal surfaces, an important issue in CO oxidation, and also in promotion and poisoning effects of catalysis. The geometrical structures of these systems were optimized with respect to the total energy, the results of which agree with existing experimental values very well. It is found that (i) the local structures of Pt(111)-p(2x2)-(CO+O), such as the bond lengths of C-O, C-Pt, and O-Pt (chemisorbed O atom with Pt), are almost the same as that in Pt(111)-p(2x2)-CO and Pt(111)-p(2x2)-O, respectively, (ii) the total valence charge density distributions in Pt(111)-p(2x2)-(CO+O) are very similar to that in Pt(111)-p(2x2)-CO, except in the region of the chemisorbed oxygen atom, and also nearly identical to that in Pt(111)-p(2x2)-O, apart from in the region of the chemisorbed CO, and (iii) the chemisorption energy of CO on a precovered Pt(111)-p(2x2)-O and the chemisorption energy of O on a precovered Pt(111)-p(2x2)CO are almost equal to that in Pt(111)-p(2x2)-CO and Pt(111)-p(2x2)-O, respectively. These results indicate that the interaction between CO and chemisorbed oxygen on a metal surface is mainly shore range in nature. The discussions of Pt-CO and Pt-O bonding and the interaction between CO and the chemisorbed oxygen atom on Pt(111) are augmented by local densities of states and real space distributions of quantum states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method for the preparation of titania sol–gel derived oxygen sensors based on the ruthenium(II) dye, [Ru(bpy)3]2+, is described. A titania sol–gel paste film was cast onto microscope slides, and the dye ion-paired to the deprotonated, hydroxylated groups on the film's surface from an aqueous solution of the dye at pH 11. The resulting sensor film is extremely oxygen sensitive, with a PO2 (S = 1/2) value (i.e. the partial pressure of oxygen required in order to reduce the original, oxygen free, luminescence intensity by 50%) of 0.011 atm. The sensor undergoes 95% response to oxygen in 4 s, and shows 95% recovery of its luminescence in argon within 7 s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioresorbable polymers have been widely investigated as materials exhibiting significant potential for successful application in the medical fields of bone fixation devices and drug delivery. Further to the ability to control degradation, surface engineering of polymers has been highlighted as a key method central to their development. Previous work has demonstrated the ability of electron beam (e-beam) technology to control the degradation profiles and bioresorption of a number of commercially relevant bioresorbable polymers (poly-l-lactic acid (PLLA), L-lactide/ DL-lactide co-polymer (PLDL) and poly(lactic-co-glycolic acid) (PLGA). This work investigates the further potential of e-beam technology to impart added biofunctionality through the manipulation of polymer (PLLA) surface properties. A Dynamatron Continuous DC e-beam unit (Synergy Health, UK), with beam energies of 0.5, 0.75, and 1.5 MeV, was used for the irradiation of PLLA samples with delivered surface doses of 150 or 500 kGy at each energy level. The chosen conditions reflect the need to achieve a specific surface modification for the control of surface degradation as demonstrated in previous work. Surface characterization was then performed using contact angle analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy.
Results demonstrated a significant increase in surface wettability post e-beam treatment. In correlation with this, XPS data showed the introduction of oxygen-containing functional groups to the surface of PLLA. Raman spectroscopy indicated chain scission in the near surface region of PLLA. E-beam irradiation did not seem to affect the surface roughness of PLLA as a direct consequence of the treatment. In conclusion electron beam surface modification has been found to modify both the surface-to-bulk bioresorption profile and the surface hydrophilicity. Both could provide benefits in relation to the performance of implantable medical devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of sodium-modification on the catalyst and electrocatalytic properties of a platinum catalyst supported on a YSZ solid electrolyte was studied. Increasing the sodium coverage on the catalyst surface appears to block some of the three-phase boundary (tpb) sites and reduces the rate of the charge transfer reaction. The promotion of the platinum surface reaction (ethylene oxidation) seems to a first approximation to be a function of the rate of oxygen supply or removal to or from the surface irrespective of whether this is contaminated by sodium or not (samples with sodium contamination require a higher overpotential to achieve the same current density as a clean sample because of poisoning in the tpb). At high negative polarisations (oxygen removed from the surface) the sodium contaminated samples show a significant increase in rate, possibly due to the decomposition of e.g. sodium hydroxides and carbonates. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinetic demixing and decomposition were studied on three La0.6Sr0.4Co0.2Fe0.8O3- δ oxygen-separation hollow fibre membrane modules, which were operated under a 0.21/0.009bar oxygen partial pressure difference at 950°C for 1128, 3672 and 5512h, respectively. The post-operation membranes were characterized by Secondary Ion Mass Spectrometry, Scanning Electronic Microscope, Energy Dispersive Spectrum and X-ray Diffraction. The occurrence of kinetic demixing and decomposition was confirmed through the microstructural evolution of the membranes. Secondary-phase grains were found on the air-side surface of the membranes after the long-term operation and Co and Fe enrichment as well as La depletion was found on the surface and in the bulk at the air side. Cation diffusivities were found to be in the order Co>Fe>Sr>La. Kinetic demixing and decomposition rates of the membranes at the air side were found to be self-accelerating with time; the role of A-site deficiency in the perovskite lattice in the bulk near the air side surface is implicated in the mechanism. The oxygen permeability was not affected by the kinetic demixing and decomposition of the material during long-term operation (up to 5512h), however, we may expect permeability to be affected by secondary phase formation on the air-side surface at even longer operational times. © 2010 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500 m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To gain insight into IL5 receptor subunit recruitment mechanism, and in particular the experimentally elusive pathway for assembly of signaling subunit beta(c), we constructed a soluble beta(c) ectodomain (s(beta)(c)) and developed an optical biosensor assay to measure its binding kinetics. Functionally active s(beta)(c) was anchored via a C-terminal His tag to immobilized anti-His monoclonal antibodies on the sensor surface. Using this surface, we quantitated for the first time direct binding of s(beta)(c) to IL5R(alpha) complexed to either wild-type or single-chain IL5. Binding was much weaker if at all with either R(alpha) or IL5 alone. Kinetic evaluation revealed a moderate affinity (0.2-1 microM) and relatively fast off rate for the s(beta)(c) interaction with IL5:R(alpha) complexes. The data support a model in which beta(c) recruitment occurs with preformed IL5:R(alpha) complex. Dissociation kinetics analysis suggests that the IL5-alpha-beta(c) complex is relatively short-lived. Overall, this study solidifies a model of sequential recruitment of receptor subunits by IL5, provides a novel biosensor binding assay of beta(c) recruitment dynamics, and sets the stage for more advanced characterization of the roles of structural elements within R(alpha), beta(c), and cytokines of the IL5/IL3/GM-CSF family in receptor recruitment and activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Performance data for a dye based, regenerable oxygen sensor (Mills and Lawrie [1], Mills et al. [2]) are analyzed to develop useful kinetic models for sensor photoactivation (dye reduction) and dark, oxygen detection (dye oxidation). The titania loaded, thin film sensor exhibits an apparent first order photoactivation of the dye, which we demonstrate (Section 3.2 and Fig. 4) is due to a kinetic disguise of a zero order photoreaction occurring through a non-uniformly illuminated sensor film. The observed zero order, slow recovery due to dye oxidation by dioxygen (O2 detection) appears best rationalized by a model assuming a near O2-impermeable skin developing on the sensor surface as solvent is evaporatively removed following sensor film casting and curing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ecological quality of lakes and other surface water bodies in the European Union is determined by the quality of the structure and functioning of the aquatic ecosystem. The depletion rate of oxygen in the hypolimnion is an important process in thermally stratified lakes and the distribution of consumption between water and sediment an important structural characteristic. It is shown that the variation of volumetric oxygen consumption rate with trophic state can be used to select lake water total phosphorus and chlorophyll concentrations that correspond to changes in the functioning of the lake. Lake morphometry has little effect on this aspect of lake function and the relative amount of oxygen consumption in the water and sediment changes only a little with trophic state, most of the consumption being in the water. Suggestions for the reference condition, good and moderate ecological quality are made using the changes in this aspect of lake function and they are presented as lake water total phosphorus and chlorophyll concentration.