322 resultados para supernovae: individual (Supernova 1987A)
Resumo:
We present optical photometry and spectra of the superluminous Type II/IIn supernova (SN) CSS121015:004244+132827 (z = 0.2868) spanning epochs from -30 d (rest frame) to more than 200 d after maximum. CSS121015 is one of the more luminous SNe ever found and one of the best observed. The photometric evolution is characterized by a relatively fast rise to maximum (~40 d in the SN rest frame), and by a linear post-maximum decline. The light curve shows no sign of a break to an exponential tail. A broad Hα is first detected at ~+40 d (rest frame). Narrow, barely resolved Balmer and [O iii] 5007 Å lines, with decreasing strength, are visible along the entire spectral evolution. The spectra are very similar to other superluminous supernovae (SLSNe) with hydrogen in their spectrum, and also to SN 2005gj, sometimes considered Type Ia interacting with H-rich circumstellar medium. The spectra are also similar to a subsample of H-deficient SLSNe. We propose that the properties of CSS121015 are consistent with the interaction of the ejecta with a massive, extended, opaque shell, lost by the progenitor decades before the final explosion, although a magnetar-powered model cannot be excluded. Based on the similarity of CSS121015 with other SLSNe (with and without H), we suggest that the shocked-shell scenario should be seriously considered as a plausible model for both types of SLSN. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
We present photometric and spectroscopic data of the Type II-P supernova (SN II-P) 2003gd, which was discovered in M74 close to the end of its plateau phase. SN 2003gd is the first Type II supernova ( SN) to have a directly confirmed red supergiant ( RSG) progenitor. We compare SN 2003gd to SN 1999 em, a similar SN II-P, and estimate an explosion date of 2003 March 18. We determine a reddening towards the SN of E(B-V) = 0.14 +/- 0.06, using three different methods. We also calculate three new distances to M74 of 9.6 +/- 2.8, 7.7 +/- 1.7 and 9.6 +/- 2.2 Mpc. The former was estimated using the standard candle method (SCM), for Type II supernovae (SNe II), and the latter two using the brightest supergiants method (BSM). When combined with existing kinematic and BSM distance estimates, we derive a mean value of 9.3 +/- 1.8 Mpc. SN 2003gd was found to have a lower tail luminosity compared with other normal Type II-P supernovae ( SNe II-P) bringing into question the nature of this SN. We present a discussion concluding that this is a normal SN II-P, which is consistent with the observed progenitor mass of 8(-2)(+4) M-circle dot.
Resumo:
We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion, and subsequent HST images confirm the positional coincidence of the supernova with a single resolved star that is a red supergiant of 8+4-2 solar masses. This confirms both stellar evolution models and supernova theories predicting that cool red supergiants are the immediate progenitor stars of type II-plateau supernovae.
Resumo:
The massive star that underwent a collapse of its core to produce supernova (SN)1993J was subsequently identified as a non-variable red supergiant star in images of the galaxy M81 taken before explosion(1, 2). It showed an excess in ultraviolet and B-band colours, suggesting either the presence of a hot, massive companion star or that it was embedded in an unresolved young stellar association1. The spectra of SN1993J underwent a remarkable transformation from the signature of a hydrogen-rich type II supernova to one of a helium-rich (hydrogen-deficient) type Ib(3, 4). The spectral and photometric peculiarities were best explained by models in which the 13�20 solar mass supergiant had lost almost its entire hydrogen envelope to a close binary companion(5, 6, 7), producing a 'type IIb' supernova, but the hypothetical massive companion stars for this class of supernovae have so far eluded discovery. Here we report photometric and spectroscopic observations of SN1993J ten years after the explosion. At the position of the fading supernova we detect the unambiguous signature of a massive star: the binary companion to the progenitor.
Resumo:
We present results from the first high-resolution, high signal-to-noise ratio spectrum of SN 2002ic. The resolved Ha line has a P Cygni-type profile, clearly demonstrating the presence of a dense, slow-moving (~100 km s-1) outflow. We have additionally found a huge near-infrared excess, hitherto unseen in Type Ia supernovae. We argue that this is due to an infrared light-echo arising from the pre-existing dusty circumstellar medium. We deduce a circumstellar medium mass probably exceeding 0.3 Msolar produced by a mass-loss rate greater than several times 10-4 Msolar yr-1. For the progenitor, we favour a single-degenerate system where the companion is a post-asymptotic giant branch star. As a by-product of our optical data, we are able to provide a firm identification of the host galaxy of SN 2002ic.
Resumo:
The interaction between supernova ejecta and circumstellar matter, arising from previous episodes of mass loss, provides us with a means of constraining the progenitors of supernovae. Radio observations of a number of supernovae show quasi-periodic deviations from a strict power-law decline at late times. Although several possibilities have been put forward to explain these modulations, no single explanation has proven to be entirely satisfactory. Here we suggest that Luminous blue variables undergoing S-Doradus type variations give rise to enhanced phases of mass loss that are imprinted on the immediate environment of the exploding star as a series of density enhancements. The variations in mass loss arise from changes in the ionization balance of Fe, the dominant ion that drives the wind. With this idea, we find that both the recurrence timescale of the variability and the amplitude of the modulations are in line with the observations. Our scenario thus provides a natural, single-star explanation for the observed behaviour that is, in fact, expected on theoretical grounds.
Resumo:
The final fate of massive stars depends on many factors. Theory suggests that some with initial masses greater than 25 to 30 solar masses end up as Wolf-Rayet stars, which are deficient in hydrogen in their outer layers because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion of some of them produces ejecta of low kinetic energy, a faint optical luminosity and a small mass fraction of radioactive nickel. An alternative origin for low-energy supernovae is the collapse of the oxygen-neon core of a star of 7-9 solar masses. No weak, hydrogen-deficient, core-collapse supernovae have hitherto been seen. Here we report that SN 2008ha is a faint hydrogen-poor supernova. We propose that other similar events have been observed but have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN 2002cx-like events). This discovery could link these faint supernovae to some long-duration gamma-ray bursts, because extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce such long gamma-ray bursts, the afterglows of which do not show evidence of associated supernovae.
The death of massive stars - I. Observational constraints on the progenitors of Type II-P supernovae
Resumo:
We present the results of a 10.5-yr, volume-limited (28-Mpc) search for supernova (SN) progenitor stars. In doing so we compile all SNe discovered within this volume (132, of which 27 per cent are Type Ia) and determine the relative rates of each subtype from literature studies. The core-collapse SNe break down into 59 per cent II-P and 29 per cent Ib/c, with the remainder being IIb (5 per cent), IIn (4 per cent) and II-L (3 per cent). There have been 20 II-P SNe with high-quality optical or near-infrared pre-explosion images that allow a meaningful search for the progenitor stars. In five cases they are clearly red supergiants, one case is unconstrained, two fall on compact coeval star clusters and the other twelve have no progenitor detected. We review and update all the available data for the host galaxies and SN environments (distance, metallicity and extinction) and determine masses and upper mass estimates for these 20 progenitor stars using the STARS stellar evolutionary code and a single consistent homogeneous method. A maximum likelihood calculation suggests that the minimum stellar mass for a Type II-P to form is m(min) = 8.5(-1.5)(+1) M-circle dot and the maximum mass for II-P progenitors is m(max) = 16.5 +/- 1.5 M-circle dot, assuming a Salpeter initial mass function holds for the progenitor population (in the range Gamma = -1.35(-0.7)(+0.3)). The minimum mass is consistent with current estimates for the upper limit to white dwarf progenitor masses, but the maximum mass does not appear consistent with massive star populations in Local Group galaxies. Red supergiants in the Local Group have masses up to 25 M-circle dot and the minimum mass to produce a Wolf-Rayet star in single star evolution (between solar and LMC metallicity) is similarly 25-30 M-circle dot. The reason we have not detected any high-mass red supergiant progenitors above 17 M-circle dot is unclear, but we estimate that it is statistically significant at 2.4 sigma confidence. Two simple reasons for this could be that we have systematically underestimated the progenitor masses due to dust extinction or that stars between 17-25 M-circle dot produce other kinds of SNe which are not II-P. We discuss these possibilities and find that neither provides a satisfactory solution. We term this discrepancy the 'red supergiant problem' and speculate that these stars could have core masses high enough to form black holes and SNe which are too faint to have been detected. We compare the Ni-56 masses ejected in the SNe to the progenitor mass estimates and find that low-luminosity SNe with low Ni-56 production are most likely to arise from explosions of low-mass progenitors near the mass threshold that can produce a core-collapse.
Resumo:
Recent searches by unbiased, wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search and SCP-06F6 in a deep Hubble pencil beam survey were followed by the Palomar Transient Factory confirmation of host redshifts for other similar transients. The transients share the common properties of high optical luminosities (peak magnitudes similar to -21 to -23), blue colors, and a lack of H or He spectral features. The physical mechanism that produces the luminosity is uncertain, with suggestions ranging from jet-driven explosion to pulsational pair instability. Here, we report the most detailed photometric and spectral coverage of an ultra-bright transient (SN 2010gx) detected in the Pan-STARRS 1 sky survey. In common with other transients in this family, early-time spectra show a blue continuum and prominent broad absorption lines of O II. However, about 25 days after discovery, the spectra developed type Ic supernova features, showing the characteristic broad Fe II and Si II absorption lines. Detailed, post-maximum follow-up may show that all SN 2005ap and SCP-06F6 type transients are linked to supernovae Ic. This poses problems in understanding the physics of the explosions: there is no indication from late-time photometry that the luminosity is powered by Ni-56, the broad light curves suggest very large ejected masses, and the slow spectral evolution is quite different from typical Ic timescales. The nature of the progenitor stars and the origin of the luminosity are intriguing and open questions.
Resumo:
As part of the European Supernova Collaboration, we obtained extensive photometry and spectroscopy of the Type Ia supernova (SN Ia) SN 2002dj covering epochs from 11 d before to nearly two years after maximum. Detailed optical and near-infrared observations show that this object belongs to the class of the high-velocity gradient events as indicated by Si, S and Ca lines. The light curve shape and velocity evolution of SN 2002dj appear to be nearly identical to SN 2002bo. The only significant difference is observed in the optical to near-infrared colours and a reduced spectral ernission beyond 6500 A. For high-velocity gradient SNe Ia, we tentatively identify a faster rise to maximum, a more pronounced inflection in the V and R light curves after maximum and a brighter, slower declining late-time B light curve as common photometric properties of this class of object. They also seem to be characterized by a different colour and colour evolution with respect to 'normal' SNe Ia. The usual light Curve shape parameters do not distinguish these events. Stronger, more blueshifted absorption features of intermediate-mass elements and lower temperatures are the most prominent spectroscopic features of SNe Ia displaying high-velocity gradients. It appears that these events burn more intermediate-mass elements in the outer layers. Possible connections to the metallicity of the progenitor star are explored.
Resumo:
We present mid-infrared (5.2-15.2 mu m) spectra of the Type Ia supernovae (SNe Ia) 2003hv and 2005df observed with the Spitzer Space Telescope. These are the first observed mid-infrared spectra of thermonuclear supernovae, and show strong emission from fine-structure lines of Ni, Co, S, and Ar. The detection of Ni emission in SN 2005df 135 days after the explosion provides direct observational evidence of high-density nuclear burning forming a significant amount of stable Ni in a SN Ia. The SN 2005df Ar lines also exhibit a two-pronged emission profile, implying that the Ar emission deviates significantly from spherical symmetry. The spectrum of SN 2003hv also shows signs of asymmetry, exhibiting blueshifted [Co (III)], which matches the blueshift of [Fe (II)] lines in nearly coeval near-infrared spectra. Finally, local thermodynamic equilibrium abundance estimates for the yield of radioactive Ni-56 give M-56Ni approximate to 0.5 M-circle dot, for SN 2003hv, but only M-56Ni approximate to 0.13-0.22 M-circle dot for the apparently subluminous SN 2005df, supporting the notion that the luminosity of SNe Ia is primarily a function of the radioactive 56Ni yield. The observed emission-line profiles in the SN 2005df spectrum indicate a chemically stratified ejecta structure, which matches the predictions of delayed detonation (DD) models, but is entirely incompatible with current three-dimensional deflagration models. Furthermore, the degree that this layering persists to the innermost regions of the supernova is difficult to explain even in a DD scenario, where the innermost ejecta are still the product of deflagration burning. Thus, while these results are roughly consistent with a delayed detonation, it is clear that a key piece of physics is still missing from our understanding of the earliest phases of SN Ia explosions.
Resumo:
We present a new, detailed analysis of late-time mid-infrared observations of the Type II-P supernova (SN) 2003gd. At about 16 months after the explosion, the mid-IR flux is consistent with emission from 4 x 10(-5) M. of newly condensed dust in the ejecta. At 22 months emission from pointlike sources close to the SN position was detected at 8 and 24 mu m. By 42 months the 24 mu m flux had faded. Considerations of luminosity and source size rule out the ejecta of SN 2003gd as the main origin of the emission at 22 months. A possible alternative explanation for the emission at this later epoch is an IR echo from preexisting circumstellar or interstellar dust. We conclude that, contrary to the claim of Sugerman and coworkers, the mid-IR emission from SN 2003gd does not support the presence of 0.02 M. of newly formed dust in the ejecta. There is, as yet, no direct evidence that core-collapse supernovae are major dust factories.
Resumo:
We present late-time ( 590 - 994 days) mid-IR photometry of the normal but highly reddened Type IIP supernova SN 2002hh. Bright, cool, slowly fading emission is detected from the direction of the supernova. Most of this flux appears not to be driven by the supernova event but instead probably originates in a cool, obscured star formation region or molecular cloud along the line of sight. We also show, however, that the declining component of the flux is consistent with an SN-powered IR echo from a dusty progenitor CSM. Mid-IR emission could also be coming from newly condensed dust and/or an ejecta/CSM impact, but their contributions are likely to be small. For the case of a CSM-IR echo, we infer a dust mass of as little as 0.036 M-. with a corresponding CSM mass of 3.6(0.01/ r(dg)) M-., where rdg is the dust-to-gas mass ratio. Such a CSM would have resulted from episodic mass loss whose rate declined significantly about 28,000 years ago. Alternatively, an IR echo from a surrounding, dense, dusty molecular cloud might also have been responsible for the fading component. Either way, this is the first time that an IR echo has been clearly identified in a Type IIP supernova. We find no evidence for or against the proposal that Type IIP supernovae produce large amounts of dust via grain condensation in the ejecta. However, within the CSM-IR echo scenario, the mass of dust derived implies that the progenitors of the most common of core-collapse supernovae may make an important contribution to the universal dust content.
Resumo:
Optical and near-infrared (near-IR) observations of the Type Ic supernova (SN Ic) 2004aw are presented, obtained from -3 to +413 d with respect to the B-band maximum. The photometric evolution is characterized by a comparatively slow post-maximum decline of the light curves. The peaks in redder bands are significantly delayed relative to the bluer bands, the I-band maximum occurring 8.4 d later than that in B. With an absolute peak magnitude of -18.02 in the V band the SN can be considered fairly bright, but not exceptional. This also holds for the U through I bolometric light curve, where SN 2004aw has a position intermediate between SNe 2002ap and 1998bw. Spectroscopically SN 2004aw provides a link between a normal SN Ic like SN 1994I and the group of broad-lined SNe Ic. The spectral evolution is rather slow, with a spectrum at day +64 being still predominantly photospheric. The shape of the nebular [O-I] lambda lambda 6300, 6364 line indicates a highly aspherical explosion. Helium cannot be unambiguously identified in the spectra, even in the near-IR. Using an analytical description of the light-curve peak we find that the total mass of the ejecta in SN 2004aw is 3.5-8.0 M-circle dot, significantly larger than that in SN 1994I, although not as large as in SN 1998bw. The same model suggests that about 0.3 M-circle dot of Ni-56 has been synthesized in the explosion. No connection to a GRB can be firmly established.
Resumo:
We present mid-infrared observations with the Spitzer Space Telescope of the nearby Type II-P supernova SN 2004dj at epochs of 89 - 129 days. We have obtained the first mid-IR spectra of any supernova apart from SN 1987A. A prominent [Ni II] 6.64 mu m line is observed, from which we deduce that the mass of stable nickel must be at least 2.2 x 10(-4) M-.. We also observe the red wing of the CO fundamental band. We relate our findings to possible progenitors and favor an evolved star, most likely a red supergiant, with a probable initial mass between similar to 10 and 15 M-..