103 resultados para stochastic representation
Stochastic Analysis of Seepage under Hydraulic Structures Resting on Anisotropic Heterogeneous Soils
Resumo:
Handling appearance variations is a very challenging problem for visual tracking. Existing methods usually solve this problem by relying on an effective appearance model with two features: (1) being capable of discriminating the tracked target from its background, (2) being robust to the target's appearance variations during tracking. Instead of integrating the two requirements into the appearance model, in this paper, we propose a tracking method that deals with these problems separately based on sparse representation in a particle filter framework. Each target candidate defined by a particle is linearly represented by the target and background templates with an additive representation error. Discriminating the target from its background is achieved by activating the target templates or the background templates in the linear system in a competitive manner. The target's appearance variations are directly modeled as the representation error. An online algorithm is used to learn the basis functions that sparsely span the representation error. The linear system is solved via ℓ1 minimization. The candidate with the smallest reconstruction error using the target templates is selected as the tracking result. We test the proposed approach using four sequences with heavy occlusions, large pose variations, drastic illumination changes and low foreground-background contrast. The proposed approach shows excellent performance in comparison with two latest state-of-the-art trackers.
Resumo:
Interest in ‘mutual gains’ has principally been confined to studies of the unionised sector. Yet there is no reason why this conceptual dynamic cannot be extended to the non-unionised realm, specifically in relation to non-union employee representation (NER). Although extant research views NER as unfertile terrain for mutual gains, the paper examines whether NER developed in response to the European Directive on Information and Consultation (I&C) of Employees may offer a potentially more fruitful route. The paper examines this possibility by considering three cases of NER established under the I&C Directive in Ireland, assessing the extent to which mutual gains were achieved.
Resumo:
A new scheme, sketch-map, for obtaining a low-dimensional representation of the region of phase space explored during an enhanced dynamics simulation is proposed. We show evidence, from an examination of the distribution of pairwise distances between frames, that some features of the free-energy surface are inherently high-dimensional. This makes dimensionality reduction problematic because the data does not satisfy the assumptions made in conventional manifold learning algorithms We therefore propose that when dimensionality reduction is performed on trajectory data one should think of the resultant embedding as a quickly sketched set of directions rather than a road map. In other words, the embedding tells one about the connectivity between states but does not provide the vectors that correspond to the slow degrees of freedom. This realization informs the development of sketch-map, which endeavors to reproduce the proximity information from the high-dimensionality description in a space of lower dimensionality even when a faithful embedding is not possible.
Resumo:
1. Ecologists are debating the relative role of deterministic and stochastic determinants of community structure. Although the high diversity and strong spatial structure of soil animal assemblages could provide ecologists with an ideal ecological scenario, surprisingly little information is available on these assemblages.
2. We studied species-rich soil oribatid mite assemblages from a Mediterranean beech forest and a grassland. We applied multivariate regression approaches and analysed spatial autocorrelation at multiple spatial scales using Moran's eigenvectors. Results were used to partition community variance in terms of the amount of variation uniquely accounted for by environmental correlates (e.g. organic matter) and geographical position. Estimated neutral diversity and immigration parameters were also applied to a soil animal group for the first time to simulate patterns of community dissimilarity expected under neutrality, thereby testing neutral predictions.
3. After accounting for spatial autocorrelation, the correlation between community structure and key environmental parameters disappeared: about 40% of community variation consisted of spatial patterns independent of measured environmental variables such as organic matter. Environmentally independent spatial patterns encompassed the entire range of scales accounted for by the sampling design (from tens of cm to 100 m). This spatial variation could be due to either unmeasured but spatially structured variables or stochastic drift mediated by dispersal. Observed levels of community dissimilarity were significantly different from those predicted by neutral models.
4. Oribatid mite assemblages are dominated by processes involving both deterministic and stochastic components and operating at multiple scales. Spatial patterns independent of the measured environmental variables are a prominent feature of the targeted assemblages, but patterns of community dissimilarity do not match neutral predictions. This suggests that either niche-mediated competition or environmental filtering or both are contributing to the core structure of the community. This study indicates new lines of investigation for understanding the mechanisms that determine the signature of the deterministic component of animal community assembly.
Resumo:
Extreme arid regions in the worlds' major deserts are typified by quartz pavement terrain. Cryptic hypolithic communities colonize the ventral surface of quartz rocks and this habitat is characterized by a relative lack of environmental and trophic complexity. Combined with readily identifiable major environmental stressors this provides a tractable model system for determining the relative role of stochastic and deterministic drivers in community assembly. Through analyzing an original, worldwide data set of 16S rRNA-gene defined bacterial communities from the most extreme deserts on the Earth, we show that functional assemblages within the communities were subject to different assembly influences. Null models applied to the photosynthetic assemblage revealed that stochastic processes exerted most effect on the assemblage, although the level of community dissimilarity varied between continents in a manner not always consistent with neutral models. The heterotrophic assemblages displayed signatures of niche processes across four continents, whereas in other cases they conformed to neutral predictions. Importantly, for continents where neutrality was either rejected or accepted, assembly drivers differed between the two functional groups. This study demonstrates that multi-trophic microbial systems may not be fully described by a single set of niche or neutral assembly rules and that stochasticity is likely a major determinant of such systems, with significant variation in the influence of these determinants on a global scale.
Resumo:
We investigate the acceleration of particles by Alfven waves via the second-order Fermi process in the lobes of giant radio galaxies. Such sites are candidates for the accelerators of ultra-high-energy cosmic rays (UHECR). We focus on the nearby Fanaroff-Riley type I radio galaxy Centaurus A. This is motivated by the coincidence of its position with the arrival direction of several of the highest energy Auger events. The conditions necessary for consistency with the acceleration time-scales predicted by quasi-linear theory are reviewed. Test particle calculations are performed in fields which guarantee electric fields with no component parallel to the local magnetic field. The results of quasi-linear theory are, to an order of magnitude, found to be accurate at low turbulence levels for non-relativistic Alfven waves and at both low and high turbulence levels in the mildly relativistic case. We conclude that for pure stochastic acceleration via Alfven waves to be plausible as the generator of UHECR in Cen A, the baryon number density would need to be several orders of magnitude below currently held upper limits.
Resumo:
Bayesian probabilistic analysis offers a new approach to characterize semantic representations by inferring the most likely feature structure directly from the patterns of brain activity. In this study, infinite latent feature models [1] are used to recover the semantic features that give rise to the brain activation vectors when people think about properties associated with 60 concrete concepts. The semantic features recovered by ILFM are consistent with the human ratings of the shelter, manipulation, and eating factors that were recovered by a previous factor analysis. Furthermore, different areas of the brain encode different perceptual and conceptual features. This neurally-inspired semantic representation is consistent with some existing conjectures regarding the role of different brain areas in processing different semantic and perceptual properties. © 2012 Springer-Verlag.
Resumo:
A practical machine-vision-based system is developed for fast detection of defects occurring on the surface of bottle caps. This system can be used to extract the circular region as the region of interests (ROI) from the surface of a bottle cap, and then use the circular region projection histogram (CRPH) as the matching features. We establish two dictionaries for the template and possible defect, respectively. Due to the requirements of high-speed production as well as detecting quality, a fast algorithm based on a sparse representation is proposed to speed up the searching. In the sparse representation, non-zero elements in the sparse factors indicate the defect's size and position. Experimental results in industrial trials show that the proposed method outperforms the orientation code method (OCM) and is able to produce promising results for detecting defects on the surface of bottle caps.
Resumo:
Human action recognition is an important problem in computer vision, which has been applied to many applications. However, how to learn an accurate and discriminative representation of videos based on the features extracted from videos still remains to be a challenging problem. In this paper, we propose a novel method named low-rank representation based action recognition to recognize human actions. Given a dictionary, low-rank representation aims at finding the lowestrank representation of all data, which can capture the global data structures. According to its characteristics, low-rank representation is robust against noises. Experimental results demonstrate the effectiveness of the proposed approach on several publicly available datasets.
Resumo:
Directional Modulation (DM) is a recently proposed technique for securing wireless communication. In this paper we point out that modulation-directionality is a consequence of varying the beamforming network, either in baseband or in the RF stage, at the information rate In order to formalize and extend on previous analysis and synthesis methods a new theoretical treatment using vector representations of directional modulation (DM) systems is introduced and used to obtain the necessary and sufficient con