88 resultados para silver compounds
Resumo:
Silver colloids prepared by reducing AgNO3 in aqueous solution with sodium citrate were embedded in alumina following two different preparation procedures resulting in samples containing 3 and 5 wt.% silver. Characterization of these materials using TEM. XPS, XAES, CP/MAS NMR, XRD, and adsorption-desorption isotherms of nitrogen showed that embedding the pre-prepared silver colloids into the alumina via the sol-gel procedure preserved the particle size of silver. However, as XAES demonstrates, the catalysts prepared in a sol-gel with a lower amount of water led to embedded colloids with a higher population of Ag+ species. The catalytic behaviors of the resultant catalysts were well correlated with the concentration of these species. Thus, the active silver species of the catalysts containing more Ag+ species selectively converts NO to N-2. However, subsequent thermal aging leads to an enhancement of the conversion of NO parallel to slight alteration of the selectivity with the appearance of low amounts of N2O despite an increase of Ag+ species. Accordingly, an optimal surface Ag-0/Ag+ ratio is probably needed, independently of the size of silver particles. It was found that this optimal ratio strongly depends on the operating conditions during the synthesis route. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Scanning tunnelling microscope (STM) tip-induced light emission from Au and Ag has been studied. Thin film samples similar to100nm thick were prepared by thermal evaporation at 0.5nm/s onto a room-temperature glass substrate to produce grains of 20-50nm in lateral dimension at the surface. Light emission from the samples in the STM was quasi-simultaneously recorded with the topography, at 1.8V tip bias and 3-40nA current, alternating pixel by pixel at the same bias. Typically, a surface scan range of 150 nm x 150 nm was surveyed. Au, W and PtIr tips were used.
Resumo:
Silver nanorods have been grown by electrodeposition into thin film porous alumina templates (AAO). Optical transmission measurements using p-polarized incident white light shows clear plasmon resonance extinction peaks. We successfully model the dependence on angle in incidence of extinction peak height and position using a multiple-multipoles (MMP) approach with the different spectral features being clearly associated with the effective electric field distribution and coupling between individual nanorods.
Resumo:
There is an increasing demand to develop biosensor monitoring devices capable of biomarker profiling for predicting animal adulteration and detecting multiple chemical contaminants or toxins in food produce. Surface plasmon resonance (SPR) biosensors are label free detection systems that monitor the binding of specific biomolecular recognition elements with binding partners. Essential to this technology are the production of biochips where a selected binding partner, antibody, biomarker protein or low molecular weight contaminant, is immobilised. A micro-fluidic immobilisation device allowing the covalent attachment of up to 16 binding partners in a linear array on a single surface has been developed for compatibility with a prototype multiplex SPR analyser.
The immobilisation unit and multiplex SPR analyser were respectively evaluated in their ability to be fit-for-purpose for binding partner attachment and detection of high and low molecular weight molecules. The multiplexing capability of the dual technology was assessed using phycotoxin concentration analysis as a model system. The parent compounds of four toxin groups were immobilised within a single chip format and calibration curves were achieved. The chip design and SPR technology allowed the compartmentalisation of the binding interactions for each toxin group offering the added benefit of being able to distinguish between toxin families and perform concentration analysis. This model is particularly contemporary with the current drive to replace biological methods for phycotoxin screening.
Resumo:
The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multi-walled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity. Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.
Resumo:
The syntheses of 2,2'-bipyridin-5-ylmethyl-5-(1,2-dithiolan-3-yl)pentanoate (L1) and N-(2,2'-bipyridin-5-ylmethyl)-5-(1,2-dithiolan-3-yl)pentanamide (L2) and their neutral fac carbonylrhenium(I) complexes [Re(L1)(CO)(3)Br] and [Re(L2)(CO)(3)Br] are reported. The. electronic absorption and emission spectra of the complexes are similar to the spectrum of the reference compound [Re(bipy)(CO)(3)Br] and correlate well with the density functional theory calculations undertaken. The surface-enhanced Raman spectroscopy (SERS) spectra (excited at both 532 and 785 nm) of the ligands and complexes were examined and compared to the spectrum of ethyl 5-(1,2-dithiolan-3-yl)pentanoate (L3), revealing that there is very little contribution to the spectra of these species from the dithiolated alkyl chains. The spectra are dominated by the characteristic peaks of a metalated 2,2'-bipyridyl group,arising from the silver colloid/ion complexation, and the rhenium center. The rhenium complexes show weak SERS bands related to the CO stretches and a broad band at 510 cm(-1) assigned to Re-CO stretching. Concentration dependent studies, measured by the relative intensity of several assigned peaks, indicate that, as the surface coverage increases, the bipyridine moiety lifts off the surface In the case of L1 and L2, this gives rise to complexes with silver at low concentration, enhancing the signals observed, while for the tricarbonylbromorhenium complexes of these ligands, the presence of the disulfide tether allows an enhancement in the limits of detection of these surface-borne species of 20 times in the case of [ReL2(CO)(3)Br] over [Re(bipy)(CO)(3)Br].
Resumo:
A series of metalloporphyrins of the type M(TMPyP) (where M = Ag(II), Zn(II), Cu(II) and TMPyP = meso-tetrakis(4-N-methylpyridyl)porphyrin) have been investigated in solution and on the surface of silver sols, electrodes, and MELLFs (metal liquidlike films). Similar spectra were recorded on all three surfaces but significant differences in detailed behavior were found. In particular, a novel, reversible, and rapid photoinduced demetalation reaction has been observed for the AgII(TMPyP)/MELLF system. An apparently similar demetalation reaction for the same metalloporphyrin was observed on Ag electrodes but this reversed at a very much slower rate. No demetalation of Ag(II)(TMPyP) was observed with Ag sols nor with any of the other metalloporphyrins at any of the surfaces investigated. The implications of the findings in relation to the nature of the MELLF environment are briefly considered.
Resumo:
Surface-enhanced Raman scattering (SERS) excited at several visible wavelengths and recorded using a cooled charged-coupled device detector is reported from the mobile, interfacial, liquid-like metal films (MELLFs) formed when solutions of metal complexes or pyridine in chlorocarbon solvents are mixed with aqueous sols of silver or gold. MELLF formation has not previously been reported for gold sols or for pyridine as stabilizer. Comparison of the spectra for the MELLFs formed from individual metal complexes and from 50:50 mixtures show that the spectral patterns observed for the latter are distinctive and are not generally equivalent to the sum of the spectra associated with the individual complexes, in contrast to the situation observed for sols where the individual spectra do appear to be additive. Raman scattering from both gold and silver MELLFs is readily observed at excitation wavelengths in the red, around 750 nm, but at 514 nm only that from silver films is detectable. These findings are considered in terms of particle size and absorption band intensities. A preliminary study of the film surface topography and particle size was carried out by scanning tunnelling electron microscopy (STM) of Ag MELLFs deposited on gold-coated mica substrates. Computer-processed images of the STM data show the presence on the film surface of finger-like bars, 200-400 nm long with approximately square cross-section, 40-60 nm side, together with other smaller cuboid features. The implications of these findings in relation to SERS are briefly considered.
Resumo:
Scission of a supramolecular polymer-metal complex can be carried out using collapsing cavitation bubbles created by ultrasound. Although the most plausible scission mechanism of the coordinative bonds is through mechanical force, the influence of radicals and high hot-spot temperatures on scission has to be considered. A silver(I)-N-heterocyclic carbene complex was exposed to 20 kHz ultrasound in argon, nitrogen, methane, and isobutane saturated toluene. Scission percentages were almost equal under argon, nitrogen, and methane. Radical production differs by a factor of 10 under these gases, indicating that radical production is not a significant contributor to the scission process. A model to describe the displacement of the bubble wall, strain rates, and temperature in the gas shows that critical strain rates for coil-to-stretch transition, needed for scission, are achieved at reactor temperatures of 298 K, an acoustic pressure of 1.2 x 10(5) Pa, and an acoustic frequency of 20 kHz. Lower scission percentages were measured under isobutane, which also shows lower strain rates in model simulations. The activation of the polymer-metal complexes in toluene under the influence of ultrasound occurs through mechanical force.