79 resultados para siRNA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: RALA is a novel 30 mer bioinspired amphipathic peptide that is showing promise for gene delivery. Here, we used RALA to deliver the FK506-binding protein like – FKBPL gene (pFKBPL) – a novel member of the immunophilin protein family. FKBPL is a secreted protein, with overexpression shown to inhibit angiogenesis, tumor growth and stemness, through a variety of intra- and extracellular signaling mechanisms. We also elucidated proangiogenic activity and stemness after utilizing RALA to deliver siRNA (siFKBPL). Materials & methods: The RALA/pFKBPL and RALA/siFKBPL nanoparticles were characterized in terms of size, charge, stability and toxicity. Overexpression and knockdown of FKBPL was assessed in vitro and in vivo. Results: RALA delivered both pFKBPL and siFKBPL with less cytotoxicity than commercially available counterparts. In vivo, RALA/pFKBPL delivery retarded tumor growth, and prolonged survival with an associated decrease in angiogenesis, while RALA/siFKBPL had no effect on tumor growth rate or survival, but resulted in an increase in angiogenesis and stemness. Conclusion: RALA is an effective delivery system for both FKBPL DNA and RNAi and highlights an alternative therapeutic approach to harnessing FKBPL's antiangiogenic and antistemness activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Higher expression of the miR-433 microRNA (miRNA) is associated with poorer survival outcomes in patients with HGSOC that may be overcome by a greater understanding of the functional role of this miRNA. We previously described miR-433 as a critical cell cycle regulator and mediator of cellular senescence. Downregulation of the mitotic arrest deficiency 2 (MAD2) protein by miR-433 led to increased cellular resistance to paclitaxel in epithelial ovarian cancer cells (EOC). Furthermore immunohistochemical (IHC) analysis of MAD2 expression in patients with HGSOC showed that loss of MAD2 was significantly associated with poorer patient survival. Higher miR-433 expression is also associated with an increased resistance to the platins which is unrelated to loss of MAD2 expression. In silico analysis of the miR-433 target proteins in the TCGA database identified the association between a number of miR-433 targets and poorer patient survival. IHC analysis of the miR-433 target, histone deacetylase 6 (HDAC6), confirmed that its expression was significantly associated with a decrease in patient overall survival. The knock-down of HDAC6 by siRNA in EOC cells did not attenuate apoptotic responses to paclitaxel or platin although lower endogenous HDAC6 expression was associated with more resistant EOC cell lines. In vitro analysis revealed that EOC cells which survived chemotherapeutic kill with high doses of paclitaxel expressed higher miR-433 and concomitant decreased expression of the miR-433 targets. These cells were more chemoresistant compared to the parental cell line and repopulated as 3d organoid cultures in non-adherent stem cell selective conditions; thus indicating that the cells which survive chemotherapy were viable, capable of regrowth and had an increased potential for pluripotency. In conclusion, our data suggests that chemotherapy is not driving the transcriptional upregulation of miR-433 but rather selecting a population of cells with high miR-433 expression that may contribute to chemoresistant disease and tumour recurrence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular stress responses often involve elevation of cytosolic calcium levels, and this has been suggested to stimulate autophagy. Here, however, we demonstrated that agents that alter intracellular calcium ion homeostasis and induce ER stress-the calcium ionophore A23187 and the sarco/endoplasmic reticulum Ca (2+)-ATPase inhibitor thapsigargin (TG)-potently inhibit autophagy. This anti-autophagic effect occurred under both nutrient-rich and amino acid starvation conditions, and was reflected by a strong reduction in autophagic degradation of long-lived proteins. Furthermore, we found that the calcium-modulating agents inhibited autophagosome biogenesis at a step after the acquisition of WIPI1, but prior to the closure of the autophagosome. The latter was evident from the virtually complete inability of A23187- or TG-treated cells to sequester cytosolic lactate dehydrogenase. Moreover, we observed a decrease in both the number and size of starvation-induced EGFP-LC3 puncta as well as reduced numbers of mRFP-LC3 puncta in a tandem fluorescent mRFP-EGFP-LC3 cell line. The anti-autophagic effect of A23187 and TG was independent of ER stress, as chemical or siRNA-mediated inhibition of the unfolded protein response did not alter the ability of the calcium modulators to block autophagy. Finally, and remarkably, we found that the anti-autophagic activity of the calcium modulators did not require sustained or bulk changes in cytosolic calcium levels. In conclusion, we propose that local perturbations in intracellular calcium levels can exert inhibitory effects on autophagy at the stage of autophagosome expansion and closure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane type-1 matrix metalloproteinase (MT1-MMP) is a zinc-binding endopeptidase, which plays a crucial role in tumour growth, invasion and metastasis. We have shown previously that MT1-MMP has higher expression levels in the human urothelial cell carcinoma (UCC) tissue. We show here that siRNA against MT1-MMP blocks invasion in UCC cell lines. Invasion is also blocked by broad-spectrum protease and MMP inhibitors including tissue inhibitor of metalloproteinase-1 and -2. Membrane type-1-MMP can also regulate transcription. We have used expression arrays to identify genes that are differentially transcribed when siRNA is used to suppress MT1-MMP expression. Upon MT1-MMP knockdown, Dickkopf-3 (DKK3) expression was highly upregulated. The stability of DKK3 mRNA was unaffected under these conditions, suggesting transcriptional regulation of DKK3 by MT1-MMP. Dickkopf-3 has been previously shown to inhibit invasion. We confirm that the overexpression of DKK3 leads to decreased invasive potential as well as delayed wound healing. We show for the first time that the effects of MT1-MMP on cell invasion are mediated in part through changes in DKK3 gene transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Anti-androgens are administered as a principal treatment for prostate cancer. Aggressive hormone refractory disease is characterized in some cases by the development of a neuroendocrine phenotype. However little attention has been paid to resistance pathways selected for by long-term treatment with non-steroidal anti-androgens.

METHODS: Using a resistant sub-line, LNCaP-Bic, we performed a comparative gene expression profiling using cDNA microarrays and target validation by qRT-PCR. Targets were then explored using cell proliferation, cell cycle analysis and in vitro invasion assays using siRNA technology.

RESULTS: Neurotensin/Neuromedin N (NTS) was upregulated in the LNCaP-Bic line at both the transcript and protein level. The resistant line was found to have an increased proliferation rate, more rapid cell cycle progression and increased invasiveness through Matrigel. Each phenotypic difference could be reduced using siRNA knockdown of NT.

CONCLUSION: Increased expression of NT in bicalutamide resistant prostate cancer cells induces cell proliferation and invasion suggesting that this peptide may contribute to the development of bicalutamide resistant prostate cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In patients with breast cancer (BC), deregulation of estrogen receptor (ERα) activity may account for most resistance to endocrine therapies. Our previous study used a whole-human kinome siRNA screen to identify functional actors in ERα modulation and showed the implication of proteins kinase suppressors of ras (KSR1). From those findings we evaluated the clinical impact of KSR1 variants in patients with ERα+ BC treated with TAM. DNA was obtained from 222 patients with advanced ERα+ BC treated with TAM who had undergone surgery from 1981 to 2003. We selected three potentially functional relevant KSR1 polymorphisms; two within the 3'UTR (rs224190, rs1075952) and one in the coding exon 7 (rs2293180). The primary end points were overall survival (OS) and disease-free survival (DFS). After a 6.4-year median follow-up, patients carrying the rs2241906 TT genotype showed shorter DFS (2.1 vs 7.1 years, P=0.005) and OS (2.6 vs 8.4 years P=0.002) than those with the TC or TT genotypes. Those associations remained significant in the multivariable analysis adjusting age, lymph node status, LMTK3 and IGFR variants and HER2 status. The polymorphisms rs2241906 and rs1075952 were in linkage disequilibrium. No association was shown between rs2293180 and survival. Among the actors of ERα signaling, KSR1 rs2241906 variants may predict survival in patients with advanced ERα+ BC treated with adjuvant TAM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of intermedin/adrenomedullin-2 (IMD/AM-2) protects cultured human cardiac vascular cells and fibroblasts from oxidative stress and simulated ischaemia-reoxygenation injury (I-R), predominantly via adrenomedullin AM1 receptor involvement; similar protection had not been investigated previously in human cardiomyocytes (HCM). Expression of IMD, AM and their receptor components was studied in HCM. Receptor subtype involvement in protection by exogenous IMD against injury by simulated I-R was investigated using receptor component-specific siRNAs. Direct protection by endogenous IMD against HCM injury, both as an autocrine factor produced in HCM themselves and as a paracrine factor released from HCMEC co-cultured with HCM, was investigated using peptide-specific siRNA for IMD. IMD, AM and their receptor components (CLR, RAMPs1-3) were expressed in HCM. IMD 1 nmol L−1, applied either throughout ischaemia (3 h) and re-oxygenation (1 h) or during re-oxygenation (1 h) alone, attenuated HCM injury (P < 0.05); cell viabilities were 59% and 61% respectively vs. 39% in absence of IMD. Cytoskeletal disruption, protein carbonyl formation and caspase activity followed similar patterns. Pre-treatment (4 days) of HCM with CLR and RAMP2 siRNAs attenuated (P < 0.05) protection by exogenous IMD. Pre-treatment of HCMEC with IMD (and AM) siRNA augmented (P < 0.05) I-R injury: cell viabilities were 22% (and 32%) vs. 39% untreated HCMEC. Pre-treatment of HCM with IMD (and AM) siRNA did not augment HCM injury: cell viabilities were 37% (and 39%) vs. 39% untreated HCM. Co-culture with HCMEC conferred protection from injury on HCM; such protection was attenuated when HCMEC were pre-treated with IMD (but not AM) siRNA before co-culture. Although IMD is present in HCM, IMD derived from HCMEC and acting in a paracrine manner, predominantly via AM1 receptors, makes a marked contribution to cardiomyocyte protection by the endogenous peptide against acute I-R injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Oncogenic mutations in BRAF occur in 8% of patients with advanced colorectal cancer (CRC) and have been shown to correlate with poor prognosis. In contrast to BRAF mutant (MT) melanoma, where the BRAF inhibitor Vemurafenib (PLX4032) has shown significant increases in response rates and overall survival, only minor responses to Vemurafenib treatment have been reported in BRAFMT CRC. Clear understanding of the vulnerabilities of BRAFMT CRC is important, and identification of druggable targets uniquely required by BRAFMT CRC tumours has the potential to fill a gap in the therapeutic armamentarium of advanced CRC. The aim of this study was to identify novel resistance mechanisms to MEK inhibition in BRAFMT CRC. Methods: Paired BRAFMT/WT RKO and VACO432 CRC cells and non-isogenic BRAFMT LIM2405, WiDR, HT-29 and COLO205 CRC cells were used. Changes in protein expression/activity were assessed by Western Blotting. Interactions between MEK1/2 and JAK1/2 or c-MET inhibition were assessed using the MTT cell viability assays and Flow Cytometry. Apoptosis was measured using Western Blotting for PARP, cleaved caspase 3, 8 and 9, and caspase 3/7 and 8 activity assays. Results: Treatment with MEK1/2 inhibitors AZD6244, trametinib, UO126 and PD98059 resulted in acute increases in STAT3 activity in the BRAFMT RKO and VACO432 cells but not in their BRAFWT clones and this was associated with increases in JAK2 activity. Inhibition of JAK/STAT3 activation using gene specific siRNA or small molecule inhibitors TG101348 or AZD1480, abrogated this survival response and resulted in synergy and significant increases in cell death when combined with MEK1/2 inhibitors AZD6244 or trametinib in BRAFMT CRC cells. The RTK c-MET is activated upstream of STAT3 following MEK1/2 inhibition. Inhibition of c-MET and MEK1/2, using pharmacological inhibitors (crizotinib and AZD6244), results in synergy and increased cell death in BRAFMT CRC cells. Conclusions: We have identified JAK/STAT3 activation as an important escape mechanism for BRAFMT CRC following MEK1/2 inhibition in vitro. Combinations of JAK/MEKi or MET/MEKi can be a potential novel treatment strategy for poor prognostic BRAFMT advanced CRC patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Endothelial colony-forming cells (ECFCs) hold great cytotherapeutic potential for ischaemic disease. Emerging evidence supports a key role for NADPH oxidases in underlying angiogenic processes of these and other endothelial cells. Aims. To study the influence of Nox NADPH oxidases on the pro-angiogenic function of ECFCs. Methods. Human ECFCs isolated from umbilical cord blood were treated with pro-oxidant PMA and assessed in vitro, both under basal conditions and after siRNA knockdown of Nox4, a key endothelial NADPH oxidase isoform, alongside primary mature human aortic endothelial cells (HAoECs) for comparison, using an established scratch-wound assay as the functional end-point. Results. PMA (500nM for 8h) increased cell migration (control 18.6±2.8, PMA 32.7±6.6% wound closure; n=6, P<0.05) in a superoxide-dependent manner, as indicated by attenuation of this effect in the presence of PEG-SOD. Although HAoEC migration in response to PMA also tended to increase, this did not reach statistical significance. Notably, cell migration at 16h was reduced by Nox4 knockdown in ECFCs (control siRNA 53.4±3.5, Nox4 siRNA 35.1±4.9% closure; n=3, P<0.05), but not in HAoECs, whilst the pro-migratory effect of PMA in ECFCs was potentiated after Nox4 knockdown (control siRNA 53.4±3.5, +PMA 61.5±3.2% closure; n=3, P=NS; Nox4 siRNA 35.1±4.9, +PMA 53.0±4.9% closure; n=3, P<0.05). Conclusion. ECFC migration is enhanced by low concentrations of superoxide, to a greater extent compared to mature endothelial cells, and appears to be at least partly dependent upon NADPH oxidase, including a specific role for Nox4. Although, the precise contribution of endothelial Nox NADPH oxidases isoforms remains to be determined, it is clear that these findings may have significant implications for potential ECFC-based therapies for ischaemic disease, which is associated with an oxidative microenvironment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Oncogenic mutations in BRAF occur in 8% of patients with advanced colorectal cancer (CRC) and have been shown to correlate with poor prognosis. In contrast to BRAF mutant (MT) melanoma, where the BRAF inhibitor PLX4032 has shown significant increases in response rates and overall survival compared to standard Dacarbazine treatment, only minor responses to PLX4032 treatment have been reported in BRAFMT CRC. Clear understanding of the vulnerabilities of BRAFMT CRC is important, and identification of druggable targets uniquely required by BRAFMT CRC tumors has the potential to fill a gap in the therapeutic armamentarium of advanced CRC. The aim of this study was to identify novel resistance mechanisms to MAPK inhibition in BRAFMT CRC.

Methods: Paired BRAFMT/WT RKO and VACO432 CRC cell line models and non-isogenic BRAFMT LIM2405, WiDR and COLO205 CRC cells were used. Changes in protein expression/activity were assessed by Western Blotting. Interaction between MEK1/2 and JAK1/2 inhibition was assessed using the MTT cell viability assays and flow cytometry. Apoptosis was measured using Western blotting for PARP, cleaved caspase 3/8 and caspase 8, 3/7 activity assays.

Results: Treatment with MEK1/2 inhibitors AZD6244, GSK1120212, UO126 and PD98059 resulted in acute increases in STAT3 activity in the BRAFMT RKO and VACO432 cells but not in their BRAFWT clones and this was associated with increases in JAK2 activity. Inhibition of JAK/STAT3 activation using gene specific siRNA or small molecule inhibitors TG101348 or AZD1480, abrogated this survival response and resulted in significant increases in cell death when combined with MEK1/2 inhibitors AZD6244 or GSK1120212 in BRAFMT CRC cells. In addition, combination of MEK1/2 and JAK/STAT3 inhibition resulted in strong synergy with CI values between 0.3 and 0.7 in BRAFMT CRC cells.

Conclusions: We have identified JAK/STAT3 activation as an important escape mechanism for BRAFMT CRC following MEK1/2 inhibition. These data provide a strong rationale for further investigation of combination of MEK1/2 and JAK/STAT3 inhibition in BRAFMT in vivo models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ischemia caused by coronary artery disease and myocardial infarction leads to aberrant ventricular remodeling and cardiac fibrosis. This occurs partly through accumulation of gene expression changes in resident fibroblasts, resulting in an overactive fibrotic phenotype. Long-term adaptation to a hypoxic insult is likely to require significant modification of chromatin structure in order to maintain the fibrotic phenotype. Epigenetic changes may play an important role in modulating hypoxia-induced fibrosis within the heart. Therefore, the aim of the study was to investigate the potential pro-fibrotic impact of hypoxia on cardiac fibroblasts and determine whether alterations in DNA methylation could play a role in this process. This study found that within human cardiac tissue, the degree of hypoxia was associated with increased expression of collagen 1 and alpha-smooth muscle actin (ASMA). In addition, human cardiac fibroblast cells exposed to prolonged 1% hypoxia resulted in a pro-fibrotic state. These hypoxia-induced pro-fibrotic changes were associated with global DNA hypermethylation and increased expression of the DNA methyltransferase (DNMT) enzymes DNMT1 and DNMT3B. Expression of these methylating enzymes was shown to be regulated by hypoxia-inducible factor (HIF)-1α. Using siRNA to block DNMT3B expression significantly reduced collagen 1 and ASMA expression. In addition, application of the DNMT inhibitor 5-aza-2'-deoxycytidine suppressed the pro-fibrotic effects of TGFβ. Epigenetic modifications and changes in the epigenetic machinery identified in cardiac fibroblasts during prolonged hypoxia may contribute to the pro-fibrotic nature of the ischemic milieu. Targeting up-regulated expression of DNMTs in ischemic heart disease may prove to be a valuable therapeutic approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cystic Fibrosis (CF) lung disease is characterised by a chronic and exaggerated inflammation in the airways. Despite recent developments to therapeutically overcome the underlying functional defect in CFTR (cystic fibrosis transmembrane conductance regulator), there is still an unmet need to also normalise the inflammatory response. The prolonged and heightened inflammatory response in CF is in part mediated by a lack of intrinsic downregulation of the pro-inflammatory NF-kB pathway. We have previously identified reduced expression of the NF-kB down-regulator A20 in CF as a key target to normalise the inflammatory response. Here we have used publically available gene array expression data together with sscMap (statistically significant connections’map)to successfully predict drugs already licensed for the use in humans to induce A20 mRNA and protein expression and thereby reduce inflammation. The effect of the predicted drugs on A20 and NFkB (p65) expression (mRNA) as well as pro-inflammatory cytokine release (IL-8) in the presence and absence of bacterial LPS was shown in bronchial epithelial cells lines (16HBE14o-, CFBE41o-) and in primary nasal epithelial cells (PNECs) from patients with CF (Phe508del homozygous) and non-CF controls. Additionally, the specificity of the drug action on A20 was confirmed using cell lines with TNFAIP3 (A20) knockdown (siRNA). We also show that the A20 inducing effect of ikarugamycin and quercetin is lower in CF derived airway epithelial cells than in non-CF cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New targeted approaches to ovarian clear cell carcinomas (OCCC) are needed, given the limited treatment options in this disease and the poor response to standard chemotherapy. Using a series of high-throughput cell-based drug screens in OCCC tumor cell models, we have identified a synthetic lethal (SL) interaction between the kinase inhibitor dasatinib and a key driver in OCCC, ARID1A mutation. Imposing ARID1A deficiency upon a variety of human or mouse cells induced dasatinib sensitivity, both in vitro and in vivo, suggesting that this is a robust synthetic lethal interaction. The sensitivity of ARID1A-deficient cells to dasatinib was associated with G1 -S cell-cycle arrest and was dependent upon both p21 and Rb. Using focused siRNA screens and kinase profiling, we showed that ARID1A-mutant OCCC tumor cells are addicted to the dasatinib target YES1. This suggests that dasatinib merits investigation for the treatment of patients with ARID1Amutant OCCC. Mol Cancer Ther; 15(7); 1472-84. Ó2016 AACR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNA interference (RNAi) has been shown to be a valuable tool to specifically target gene expression in a number of organisms becoming an indispensable weapon in the arsenal in functional genomics. In this study, we demonstrate that streptolysin-O (SLO) reversible permeabilisation is an efficient method to deliver small interfering RNAs (siRNAs) to hard-to-transfect human myeloma cell lines. We used published, pre-validated siRNAs for ERK2 and non-silencing siRNA control. We transfected siRNAs into human myeloma cell lines using SLO reversible permeabilisation method. Flow cytometry and western blot analysis were performed to assess the effect of SLO on transfection efficiency and ERK2 knockdown. These experiments demonstrate that SLO reversible permeabilisation method is an efficient and easy-to-use method to deliver siRNAs into human myeloma cell lines. Optimised SLO permeabilisation method showed to transfect >80% of JIM-3, H929, RPM18226 and U266 cells, with minimal effect on cell viability (<10%) and cell cycle. Equally important, SLO permeabilisation induced a substantial knockdown of ERK2 at the protein level. These studies demonstrate that reversible SLO permeabilisation can successfully be applied to hard-to-transfect human myeloma cell lines to effectively silence genes. (C) 2008 Published by Elsevier B.V.