82 resultados para roll over protective structure, frusta, impact, energy absorption, finite element technique
Resumo:
Previous research based on theoretical simulations has shown the potential of the wavelet transform to detect damage in a beam by analysing the time-deflection response due to a constant moving load. However, its application to identify damage from the response of a bridge to a vehicle raises a number of questions. Firstly, it may be difficult to record the difference in the deflection signal between a healthy and a slightly damaged structure to the required level of accuracy and high scanning frequencies in the field. Secondly, the bridge is going to have a road profile and it will be loaded by a sprung vehicle and time-varying forces rather than a constant load. Therefore, an algorithm based on a plot of wavelet coefficients versus time to detect damage (a singularity in the plot) appears to be very sensitive to noise. This paper addresses these questions by: (a) using the acceleration signal, instead of the deflection signal, (b) employing a vehicle-bridge finite element interaction model, and (c) developing a novel wavelet-based approach using wavelet energy content at each bridge section which proves to be more sensitive to damage than a wavelet coefficient line plot at a given scale as employed by others.
Resumo:
The unique properties of nanomaterials, in particular gold nanoparticles (GNPs) have applications for a wide range of biomedical applications. GNPs have been proposed as novel radiosensitizing agents due to their strong photoelectric absorption coefficient. Experimental evidence supporting the application of GNPs as radiosensitizing agents has been provided from extensive in vitro investigation and a relatively limited number of in vivo studies. Whilst these studies provide experimental evidence for the use of GNPs in combination with ionising radiation, there is an apparent disparity between the observed experimental findings and the level of radiosensitization predicted by mass energy absorption and GNP concentration. This review summarises experimental findings and attempts to highlight potential underlying biological mechanisms of response in GNP radiosensitization.
Resumo:
Numerous studies have shown that postbuckling stiffened panels may undergo abrupt changes in buckled mode
shape when loaded in uniaxial compression. This phenomenon is often referred to as a mode jump or secondary
instability. The resulting sudden release of stored energy may initiate damage in vulnerable regions within a
structure, for example, at the skin-stiffener interface of a stiffened composite panel. Current design practice is to
remove a mode jump by increasing the skin thickness of the postbuckling region. A layup optimization methodology,
based on a genetic algorithm, is presented, which delays the onset of secondary instabilities in a composite structure
while maintaining a constant weight and subject to a number of design constraints. A finite element model was
developed of a stiffened panel’s skin bay, which exhibited secondary instabilities. An automated numerical routine
extracted information directly from the finite element displacement results to detect the onset of initial buckling and
secondary instabilities. This routine was linked to the genetic algorithm to find a revised layup for the skin bay, within
appropriate design constraints, to delay the onset of secondary instabilities. The layup optimization methodology,
resulted in a panel that had a higher buckling load, prebuckling stiffness, and secondary instability load than the
baseline design.
Resumo:
Among the key challenges present in the modelling and optimisation of composite structures against impact is the computational expense involved in setting up accurate simulations of the impact event and then performing the iterations required to optimise the designs. It is of more interest to find good designs given the limitations of the resources and time available rather than the best possible design. In this paper, low cost but sufficiently accurate finite element (FE) models were generated in LS Dyna for several experimentally characterised materials by semi-automating the modelling process and using existing material models. These models were then used by an optimisation algorithm to generate new hybrid offspring, leading to minimum weight and/or cost designs from a selection of isotropic metals, polymers and orthotropic fibre-reinforced laminates that countered a specified impact threat. Experimental validation of the optimal designs thus identified was then successfully carried out using a single stage gas gun. With sufficient computational hardware, the techniques developed in this pilot study can further utilise fine meshes, equations of state and sophisticated material models, so that optimal hybrid systems can be identified from a wide range of materials, designs and threats.
Resumo:
A genetic algorithm (GA) was adopted to optimise the response of a composite laminate subject to impact. Two different impact scenarios are presented: low-velocity impact of a slender laminated strip and high-velocity impact of a rectangular plate by a spherical impactor. In these cases, the GA's objective was to, respectively, minimise the peak deflection and minimise penetration by varying the ply angles.
The GA was coupled to a commercial finite-element (FE) package LS DYNA to perform the impact analyses. A comparison with a commercial optimisation package, LS OPT, was also made. The results showed that the GA was a robust, capable optimisation tool that produced near optimal designs, and performed well with respect to LS OPT for the more complex high-velocity impact scenario tested.
Resumo:
A criterion is derived for delamination onset in transversely isotropic laminated plates under small mass, high velocity impact. The resulting delamination threshold load is about 21% higher than the corresponding quasi-static threshold load. A closed form approximation for the peak impact load is then used to predict the delamination threshold velocity. The theory is validated for a range of test cases by comparison with 3D finite element simulation using LS-DYNA and a newly developed interface element to model delamination onset and growth. The predicted delamination threshold loads and velocities are in very good agreement with the finite element simulations. Good agreement is also shown in a comparison with published experimental results. In contrast to quasi-static impacts, delamination growth occurs under a rapidly decreasing load. Inclusion of finite thickness effects and a proper description of the contact stiffness are found to be vital for accurate prediction of the delamination threshold velocity
Resumo:
A combined experimental and analytical study of a hat-stiffened carbon-fibre composite panel loaded in uniaxial compression was investigated. A buckling mode transition was observed in the panel's skin bay which was not captured using non-linear finite-element analysis. Good correlation between experimental and numerical strain and displacement results was achieved in the prebuckling and initial postbuckling region of the loading history. A Marguerre-type Rayleigh-Ritz energy method was applied to the skin bay using representative displacement functions of permissible mode shapes to explain the mode transition phenomenon. The central criterion of this method was based on the assumption that a change in mode shape occurred such that the total potential energy of the structure was maintained at a minimum. The ultimate strength of the panel was limited by the column buckling strength of the hat-stiffeners.
Resumo:
Experimental and numerical studies have shown that the occurrence of abrupt secondary instabilities, or mode-jumps, in a postbuckling stiffened composite panel may initiate structural failure. This study presents an optimisation methodology, using a genetic algorithm and finite element analysis for the lay-up optimisation of postbuckling composite plates to delay the onset of mode-jump instabilities. A simple and novel approach for detecting modejumps is proposed, based on the RMS value of out-of-plane pseudo-velocities at a number of locations distributed over the postbuckling structure
Resumo:
In recent years there have been a growing number of publications on procedures for damage detection in beams from analysing their dynamic response to the passage of a moving force. Most of this research demonstrates their effectiveness by showing that a singularity that did not appear in the healthy structure is present in the response of the damaged structure. This paper elucidates from first principles how the acceleration response can be assumed to consist of ‘static’ and ‘dynamic’ components, and where the beam has experienced a localised loss in stiffness, an additional ‘damage’ component. The combination of these components establishes how the damage singularity will appear in the total response. For a given damage severity, the amplitude of the ‘damage’ component will depend on how close the damage location is to the sensor, and its frequency content will increase with higher velocities of the moving force. The latter has implications for damage detection because if the frequency content of the ‘damage’ component includes bridge and/or vehicle frequencies, it becomes more difficult to identify damage. The paper illustrates how a thorough understanding of the relationship between the ‘static‘ and ‘damage’ components contributes to establish if damage has occurred and to provide an estimation of its location and severity. The findings are corroborated using accelerations from a planar finite element simulation model where the effects of force velocity and bridge span are examined.
Resumo:
Drug flux across microneedle (MN)-treated skin is influenced by the characteristics of the MN array, formed microconduits and physicochemical properties of the drug molecules in addition to the overall diffusional resistance of microconduits and viable tissue. Relative implication of these factors has not been fully explored. In the present study, the in vitro permeation of a series of six structurally related ionic xanthene dyes with different molecular weights (MW) and chemical substituents, across polymer MN-pretreated porcine skin was investigated in relation of their molecular characteristics. Dyes equilibrium solubility, partition coefficient in both n-octanol or porcine skin/aqueous system, and dissociation constants were determined. Results indicated that for rhodamine dyes, skin permeation of the zwitterionic form which predominates at physiological pH, was significantly reduced by an increase in MW, the skin thickness and by the presence of the chemically reactive isothiocyanate substituent. These factors were generally shown to override the aqueous solubility, an important determinant of drug diffusion in an aqueous milieu. The data obtained provided more insight into the mechanism of drug permeation across MN-treated skin, which is of importance to both the design of MN-based transdermal drug delivery systems and of relevance to skin permeation research.
Resumo:
This paper presents the finite element (FE) analysis of the consolidation of the foundation of an embankment constructed over soft clay deposit which shows significant time dependent behaviour and was improved with prefabricated vertical drains. To assess the capability of a simple elastic viscoplastic (EVP) model to predict the long term performance of a geotechnical structure constructed on soft soils, a well documented (Leneghans) embankment was analyzed to predict its long term behaviour characteristics. Two fully coupled two dimensional (2D) plane strain FE analyses have been carried out. In one of these, the foundation of the embankment was modelled with a relatively simpler time dependent EVP model and in the other one, for comparison purposes, the foundation soil was modelled with elasto-plastic Modified Cam-clay (MCC) model. Details of the analyses and the results are discussed in comparison with the field performance. Predictions from the creep (EVP) model were found to be better than those from Elasto-plastic (MCC) analysis. However, the creep analysis requires an additional parameter and additional computational time and resources. © 2011 Taylor & Francis.
Resumo:
An intralaminar damage model (IDM), based on continuum damage mechanics, was developed for the simulation of composite structures subjected to damaging loads. This model can capture the complex intralaminar damage mechanisms, accounting for mode interactions, and delaminations. Its development is driven by a requirement for reliable crush simulations to design composite structures with a high specific energy absorption. This IDM was implemented as a user subroutine within the commercial finite element package, Abaqus/Explicit[1]. In this paper, the validation of the IDM is presented using two test cases. Firstly, the IDM is benchmarked against published data for a blunt notched specimen under uniaxial tensile loading, comparing the failure strength as well as showing the damage. Secondly, the crush response of a set of tulip-triggered composite cylinders was obtained experimentally. The crush loading and the associated energy of the specimen is compared with the FE model prediction. These test cases show that the developed IDM is able to capture the structural response with satisfactory accuracy
Resumo:
Despite the abundance of studies investigating the performance of composite structures under crush loading, disagreement remains in the literature regarding the effect of increased strain rate on the crush response. This study reports an experimental investigation of the behaviour of a carbon-epoxy composite energy absorber under static and dynamic loading with a strain rate of up to 100s<sup>-1</sup>. Consistent damage modes and measured force responses were obtained in samples tested under the same strain rate. The energy absorption was found to be independent of strain rate as the total energy absorption appeared to be largely associated with fibre-dominated fracture, which is independent of strain rate within the studied range. The results from this study are beneficial for the design of energy absorbing structures.
Predicting the crushing behaviour of composite material using high-fidelity finite element modelling
Resumo:
The capability to numerically model the crushing behaviour of composite structures will enable the efficient design of structures with high specific energy absorption capacity. This is particularly relevant to the aerospace and automotive industries where cabin structures need to be shown to be crashworthy. In this paper, a three-dimensional damage model is presented, which accurately represents the behaviour of composite laminates under crush loading. Both intralaminar and interlaminar failure mechanisms are taken into account. The crush damage model was implemented in ABAQUS/Explicit as a VUMAT subroutine. Numerical predictions are shown to agree well with experimental results, accurately capturing the intralaminar and interlaminar damage for a range of stacking sequences, triggers and composite materials. The use of measured material parameters required by the numerical models, without the need to ‘calibrate’ this input data, demonstrates this computational tool's predictive capabilities
Resumo:
For sustainability considerations, the use of recycled aggregate in concrete has attracted many interests in the research community. One of the main concerns for using such concrete in buildings is its spalling in fire. This may be alleviated by adding steel fibers to form steel fiber reinforced recycled aggregate concrete (SFRAC). This paper presents an experimental investigation into the compressive properties of SFRAC cylinders after exposure to elevated temperatures, including the compressive strength, Young's modulus (stiffness), stress-strain curve and energy absorption capacity (toughness). The effects of two parameters, namely steel fiber volume content (0%, 0.5%, 1%, 1.5%) and temperature (room temperature, 200 °C, 400 °C and 600 °C) on the compressive mechanical properties of concrete were investigated. The test results show that both compressive strength and stiffness of the concrete are significantly reduced after exposure to high temperatures. The addition of steel fibers is helpful in preventing spalling, and significantly improves the ductility and the cracking behavior of recycled aggregate concrete (RAC) after exposure to high temperatures, which is favorable for the application of RAC in building construction.