94 resultados para recombinant yeast
Resumo:
Artemisinin and related compounds are potent and widely used antimalarial drugs but their biochemical mode of action is not clear. There is strong evidence that ATP-dependent calcium transporters are a key target in the malarial parasite. However, work using Saccharomyces cerevisiae suggests that disruption of mitochondrial function is critical in the cell killing activity of these compounds. Here it is shown that, in the absence of reducing agents, artemisinin and artesunate targeted the S. cerevisiae calcium channels Pmr1p and Pmc1p. Both compounds affected the growth of yeast on fermentable and nonfermentable media. This growth inhibition was not seen in a yeast strain in which the genes encoding both calcium channels were deleted. In the presence of reducing agents, which break the endoperoxide bridge in the drugs, growth inhibition was only observed in nonfermentable media. This inhibition could be partially relieved by the addition of a free radical scavenger. These results suggest that the drugs have two biochemical modes of action - one acting by specific binding to calcium channels and one involving free radical production in the mitochondria.
Resumo:
The liver fluke, Fasciola hepatica causes liver fluke disease, or fasciolosis, in ruminants such as cattle and sheep. An effective vaccine against the helminth parasite is essential to reduce our reliance on anthelmintics, particularly in light of frequent reports of resistance to some frontline drugs. In our study, Friesian cattle (13 per group) were vaccinated with recombinant F. hepatica cathepsin L1 protease (rFhCL1) formulated in mineral-oil based adjuvants, Montanide (TM) ISA 70VG and ISA 206VG. Following vaccination the animals were exposed to fluke-contaminated pastures for 13 weeks. At slaughter, there was a significant reduction in fluke burden of 48.2% in the cattle in both vaccinated groups, relative to the control non-vaccinated group, at p
Resumo:
Protection against Fasciola hepatica in goats immunized with Peroxiredoxin (Prx) was assessed. The experimental trial consisted of three groups of seven animals: group 1 were unimmunized and uninfected, group 2 were immunized with adjuvant only and group 3 were immunized with recombinant Prx in adjuvant (immunized and infected). Immunization with Prx in Quil A adjuvant, group 3, induced a reduction in fluke burden of 33.04% when compared to adjuvant control, group 2, although this difference was not significant. The hepatic gross and microscopical morphometric study revealed lower damage in the Prx-immunized compared to group 2 (p
Resumo:
Recombinant wild-type beta(1) gamma(1) dimers of signal-transducing guanine nucleotide-binding proteins (G proteins) and beta(1) gamma 1 dimers carrying a mutation known to block gamma-subunit isoprenylation (beta(1) gamma(1)C71S) were expressed in baculovirus-infected insect cells. Both wild-type and mutant beta(1) gamma(1) dimers were found in soluble fractions of infected cells upon subcellular fractionation. Anion exchange chromatographic and metabolic-radiolabeling studies revealed that the soluble beta(1) gamma(1) preparation contained approximately equal amounts of non-isoprenylated and isoprenylated beta(1) gamma(1) dimers. Soluble wild-type and mutant beta(1) gamma(1) dimers and native beta(1) gamma(1) dimers purified from bovine retina were reconstituted with recombinant phospholipase C-beta(2). Only isoprenylated beta(1) gamma(1) dimers were capable of stimulating phospholipase C-beta(2). The results show that gamma-subunit isoprenylation and/or additional post-translational processing of the protein are required for beta gamma subunit stimulation of phospholipase C.
Resumo:
Mucosally-administered vaccine strategies are widely investigated as a promising means of preventing HIV infection. This study describes the development of liposomal gel formulations, and novel lyophilised variants, comprising HIV-1 envelope glycoprotein, CN54gp140, encapsulated within neutral, positively charged or negatively charged liposomes. The CN54gp140 liposomes were evaluated for mean vesicle diameter, polydispersity, morphology, zeta potential and antigen encapsulation efficiency before being incorporated into hydroxyethyl cellulose (HEC) aqueous gel and subsequently lyophilised to produce a rod-shaped solid dosage form for practical vaginal application. The lyophilised liposome-HEC rods were evaluated for moisture content and redispersibility in simulated vaginal fluid. Since these rods are designed to revert to gel form following intravaginal application, mucoadhesive, mechanical (compressibility and hardness) and rheological properties of the reformed gels were evaluated. The liposomes exhibited good encapsulation efficiency and the gels demonstrated suitable mucoadhesive strength. The freeze-dried liposome-HEC formulations represent a novel formulation strategy that could offer potential as stable and practical dosage form.
Resumo:
A recombinant cytoplasmic preparation of lysine: N6-hydroxylase, IucD398, with a deletion of 47 amino acids at the N-terminus, was purified to homogeneity. IucD398 is capable of N-hydroxylation of L-lysine upon supplementation with FAD and NADPH. The enzyme is stringently specific with L-lysine and (S)-2-aminoethyl-L-cysteine serving as substrates. Protonophores, FCCP and CCCP, as well as cinnamylidene, have been found to serve as potent inhibitors of lysine: N6-hydroxylation by virtue of their ability to interfere in the reduction of the flavin cofactor.
Resumo:
The aerobactin gene cluster in pColV-K30 consists of five genes (iucABCD iutA); four of these (iucABCD) are involved in aerobactin biosynthesis, whereas the fifth one (iutA) encodes the ferriaerobactin outer membrane receptor. iucD encodes lysine:N6-hydroxylase, which catalyzes the first step in aerobactin biosynthesis. Regardless of the method used for cell rupture, we have consistently found that IucD remains membrane bound, and repeated efforts to achieve a purified and active soluble form of the enzyme have been unsuccessful. To circumvent this problem, we have constructed recombinant IucD proteins with modified amino termini by creating three in-frame gene fusions of IucD to the amino-terminal amino acids of the cytoplasmic enzyme beta-galactosidase. Two of these constructs resulted in the addition to the iucD coding region of a hydrophilic leader sequence of 13 and 30 amino acids. The other construct involved the deletion of the first 47 amino acids of the IucD amino terminus and the addition of 19 amino acids of the amino terminus of beta-galactosidase. Cells expressing any of the three recombinant IucD forms were found to produce soluble N6-hydroxylysine. One of these proteins, IucD439, was purified to homogeneity from the soluble fraction of the cell lysates, and it was capable of participating in the biosynthesis of aerobactin, as determined in vitro by a cell-free system and in vivo by a cross-feeding bioassay. A medium ionic strength of 0.25 (250 mM NaCl) or higher was required to maintain the protein in a catalytically functional, tetrameric state.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Dissolving polymeric microneedle arrays formulated to contain recombinant CN54 HIVgp140 and the TLR4 agonist adjuvant MPLA were assessed for their ability to elicit antigen-specific immunity. Using this novel microneedle system we successfully primed antigen-specific responses that were further boosted by an intranasal mucosal inoculation to elicit significant antigen-specific immunity. This prime-boost modality generated similar serum and mucosal gp140-specific IgG levels to the adjuvanted and systemic subcutaneous inoculations. While the microneedle primed groups demonstrated a balanced Th1/Th2 profile, strong Th2 polarization was observed in the subcutaneous inoculation group, likely due to the high level of IL-5 secretion from cells in this group. Significantly, the animals that received a microneedle prime and intranasal boost regimen elicited a high level IgA response in both the serum and mucosa, which was greatly enhanced over the subcutaneous group. The splenocytes from this inoculation group secreted moderate levels of IL-5 and IL-10 as well as high amounts of IL-2, cytokines known to act in synergy to induce IgA. This work opens up the possibility for microneedle-based HIV vaccination strategies that, once fully developed, will greatly reduce risk for vaccinators and patients, with those in the developing world set to benefit most.