83 resultados para power series distribution
Resumo:
The intricate spatial and energy distribution of magnetic fields, self-generated during high power laser irradiation (at Iλ2∼1013-1014W.cm-2.μm2) of a solid target, and of the heat-carrying electron currents, is studied in inertial confinement fusion (ICF) relevant conditions. This is done by comparing proton radiography measurements of the fields to an improved magnetohydrodynamic description that fully takes into account the nonlocality of the heat transport. We show that, in these conditions, magnetic fields are rapidly advected radially along the target surface and compressed over long time scales into the dense parts of the target. As a consequence, the electrons are weakly magnetized in most parts of the plasma flow, and we observe a reemergence of nonlocality which is a crucial effect for a correct description of the energetics of ICF experiments.
Resumo:
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Resumo:
Research over the past two decades on the Holocene sediments from the tide dominated west side of the lower Ganges delta has focussed on constraining the sedimentary environment through grain size distributions (GSD). GSD has traditionally been assessed through the use of probability density function (PDF) methods (e.g. log-normal, log skew-Laplace functions), but these approaches do not acknowledge the compositional nature of the data, which may compromise outcomes in lithofacies interpretations. The use of PDF approaches in GSD analysis poses a series of challenges for the development of lithofacies models, such as equifinal distribution coefficients and obscuring the empirical data variability. In this study a methodological framework for characterising GSD is presented through compositional data analysis (CODA) plus a multivariate statistical framework. This provides a statistically robust analysis of the fine tidal estuary sediments from the West Bengal Sundarbans, relative to alternative PDF approaches.
Resumo:
Photovoltaic (PV) solar power generation is proven to be effective and sustainable but is currently hampered by relatively high costs and low conversion efficiency. This paper addresses both issues by presenting a low-cost and efficient temperature distribution analysis for identifying PV module mismatch faults by thermography. Mismatch faults reduce the power output and cause potential damage to PV cells. This paper first defines three fault categories in terms of fault levels, which lead to different terminal characteristics of the PV modules. The investigation of three faults is also conducted analytically and experimentally, and maintenance suggestions are also provided for different fault types. The proposed methodology is developed to combine the electrical and thermal characteristics of PV cells subjected to different fault mechanisms through simulation and experimental tests. Furthermore, the fault diagnosis method can be incorporated into the maximum power point tracking schemes to shift the operating point of the PV string. The developed technology has improved over the existing ones in locating the faulty cell by a thermal camera, providing a remedial measure, and maximizing the power output under faulty conditions.
Resumo:
This paper proposes a new thermography-based maximum power point tracking (MPPT) scheme to address photovoltaic (PV) partial shading faults. Solar power generation utilizes a large number of PV cells connected in series and in parallel in an array, and that are physically distributed across a large field. When a PV module is faulted or partial shading occurs, the PV system sees a nonuniform distribution of generated electrical power and thermal profile, and the generation of multiple maximum power points (MPPs). If left untreated, this reduces the overall power generation and severe faults may propagate, resulting in damage to the system. In this paper, a thermal camera is employed for fault detection and a new MPPT scheme is developed to alter the operating point to match an optimized MPP. Extensive data mining is conducted on the images from the thermal camera in order to locate global MPPs. Based on this, a virtual MPPT is set out to find the global MPP. This can reduce MPPT time and be used to calculate the MPP reference voltage. Finally, the proposed methodology is experimentally implemented and validated by tests on a 600-W PV array.
Resumo:
ABSTRACT BODY: To resolve outstanding questions on heating of coronal loops, we study intensity fluctuations in inter-moss portions of active region core loops as observed with AIA/SDO. The 94Å fluctuations (Figure 1) have structure on timescales shorter than radiative and conductive cooling times. Each of several strong 94Å brightenings is followed after ~8 min by a broader peak in the cooler 335Å emission. This indicates that we see emission from the hot component of the 94Å contribution function. No hotter contributions appear, and we conclude that the 94Å intensity can be used as a proxy for energy injection into the loop plasma. The probability density function of the observed 94Å intensity has 'heavy tails' that approach zero more slowly than the tails of a normal distribution. Hence, large fluctuations dominate the behavior of the system. The resulting 'intermittence' is associated with power-law or exponential scaling of the related variables, and these in turn are associated with turbulent phenomena. The intensity plots in Figure 1 resemble multifractal time series, which are common to various forms of turbulent energy dissipation. In these systems a single fractal dimension is insufficient to describe the dynamics and instead there is a spectrum of fractal dimensions that quantify the self-similar properties. Figure 2 shows the multifractal spectrum from our data to be invariant over timescales from 24 s to 6.4 min. We compare these results to outputs from theoretical energy dissipation models based on MHD turbulence, and in some cases we find substantial agreement, in terms of intermittence, multifractality and scale invariance. Figure 1. Time traces of 94A intensity in the inter-moss portions of four AR core loops. Figure 2. Multifractal spectra showing timescale invariance. The four cases of Figure 1 are included.
Resumo:
Energy consumption has become an important area of research of late. With the advent of new manycore processors, situations have arisen where not all the processors need to be active to reach an optimal relation between performance and energy usage. In this paper a study of the power and energy usage of a series of benchmarks, the PARSEC and the SPLASH- 2X Benchmark Suites, on the Intel Xeon Phi for different threads configurations, is presented. To carry out this study, a tool was designed to monitor and record the power usage in real time during execution time and afterwards to compare the r
Resumo:
This article examines the impact of financialisation on the income shares of the top 1% from 1990-2010, through a panel analysis of 14 OECD countries. Drawing together literatures stressing the dependence of income inequality on the structural bargaining power of capital relative to labour, and of the dependence of accumulation on underlying institutionalised modes of state regulation, it shows that financialisation has significantly enhanced top income shares net of underlying controls. Whilst the income shares of the top 1% appear responsive to variables typical of wider studies of personal income inequality, we emphasise distinctive mechanisms of top income growth linked to the rising dominance of financial instruments and actors, facilitated by a historically specific regulatory order. These conditions were key to the emergence of a state of ‘asymmetric bargaining’ which disproportionately enhanced the fortunes of the wealthy. Results thus emphasise the importance of class-biased power resources and underlying regulatory structures, as determinants both of income concentration and of the distribution of economic rewards beyond growth capacity alone.
Resumo:
Statistical downscaling (SD) methods have become a popular, low-cost and accessible means of bridging the gap between the coarse spatial resolution at which climate models output climate scenarios and the finer spatial scale at which impact modellers require these scenarios, with various different SD techniques used for a wide range of applications across the world. This paper compares the Generator for Point Climate Change (GPCC) model and the Statistical DownScaling Model (SDSM)—two contrasting SD methods—in terms of their ability to generate precipitation series under non-stationary conditions across ten contrasting global climates. The mean, maximum and a selection of distribution statistics as well as the cumulative frequencies of dry and wet spells for four different temporal resolutions were compared between the models and the observed series for a validation period. Results indicate that both methods can generate daily precipitation series that generally closely mirror observed series for a wide range of non-stationary climates. However, GPCC tends to overestimate higher precipitation amounts, whilst SDSM tends to underestimate these. This infers that GPCC is more likely to overestimate the effects of precipitation on a given impact sector, whilst SDSM is likely to underestimate the effects. GPCC performs better than SDSM in reproducing wet and dry day frequency, which is a key advantage for many impact sectors. Overall, the mixed performance of the two methods illustrates the importance of users performing a thorough validation in order to determine the influence of simulated precipitation on their chosen impact sector.
Resumo:
Traditional internal combustion engine vehicles are a major contributor to global greenhouse gas emissions and other air pollutants, such as particulate matter and nitrogen oxides. If the tail pipe point emissions could be managed centrally without reducing the commercial and personal user functionalities, then one of the most attractive solutions for achieving a significant reduction of emissions in the transport sector would be the mass deployment of electric vehicles. Though electric vehicle sales are still hindered by battery performance, cost and a few other technological bottlenecks, focused commercialisation and support from government policies are encouraging large scale electric vehicle adoptions. The mass proliferation of plug-in electric vehicles is likely to bring a significant additional electric load onto the grid creating a highly complex operational problem for power system operators. Electric vehicle batteries also have the ability to act as energy storage points on the distribution system. This double charge and storage impact of many uncontrollable small kW loads, as consumers will want maximum flexibility, on a distribution system which was originally not designed for such operations has the potential to be detrimental to grid balancing. Intelligent scheduling methods if established correctly could smoothly integrate electric vehicles onto the grid. Intelligent scheduling methods will help to avoid cycling of large combustion plants, using expensive fossil fuel peaking plant, match renewable generation to electric vehicle charging and not overload the distribution system causing a reduction in power quality. In this paper, a state-of-the-art review of scheduling methods to integrate plug-in electric vehicles are reviewed, examined and categorised based on their computational techniques. Thus, in addition to various existing approaches covering analytical scheduling, conventional optimisation methods (e.g. linear, non-linear mixed integer programming and dynamic programming), and game theory, meta-heuristic algorithms including genetic algorithm and particle swarm optimisation, are all comprehensively surveyed, offering a systematic reference for grid scheduling considering intelligent electric vehicle integration.
Resumo:
The spatial distribution of a species can be characterized at many different spatial scales, from fine-scale measures of local population density to coarse-scale geographical-range structure. Previous studies have shown a degree of correlation in species' distribution patterns across narrow ranges of scales, making it possible to predict fine-scale properties from coarser-scale distributions. To test the limits of such extrapolation, we have compiled distributional information on 16 species of British plants, at scales ranging across six orders of magnitude in linear resolution (1 in to 100 km). As expected, the correlation between patterns at different spatial scales tends to degrade as the scales become more widely separated. There is, however, an abrupt breakdown in cross-scale correlations across intermediate (ca. 0.5 km) scales, suggesting that local and regional patterns are influenced by essentially non-overlapping sets of processes. The scaling discontinuity may also reflect characteristic scales of human land use in Britain, suggesting a novel method for analysing the 'footprint' of humanity on a landscape.
Resumo:
The future European power system will have a hierarchical structure created by layers of system control from a Supergrid via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the context of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called 'back-up generation' needed to support an 80% renewable energy portfolio in Europe by 2050. © 2013 IEEE.
Resumo:
The power system of the future will have a hierarchical structure created by layers of system control from via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the concept of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called ‘back-up generation’ needed to support an 80% renewable energy portfolio in Europe by 2050.
Adaptive backstepping droop controller design for multi-terminal high-voltage direct current systems
Resumo:
Wind power is one of the most developed renewable energy resources worldwide. To integrate offshore wind farms to onshore grids, the high-voltage direct current (HVDC) transmission cables interfaced with voltage source converters (VSCs) are considered to be a better solution than conventional approaches. Proper DC voltage indicates successive power transfer. To connect more than one onshore grid, the DC voltage droop control is one of the most popular methods to share the control burden between different terminals. However, the challenges are that small droop gains will cause voltage deviations, while higher droop gain settings will cause large oscillations. This study aims to enhance the performance of the traditional droop controller by considering the DC cable dynamics. Based on the backstepping control concept, DC cables are modelled with a series of capacitors and inductors. The final droop control law is deduced step-by-step from the original remote side. At each step the control error from the previous step is considered. Simulation results show that both the voltage deviations and oscillations can be effectively reduced using the proposed method. Further, power sharing between different terminals can be effectively simplified such that it correlates linearly with the droop gains, thus enabling simple yet accurate system operation and control.