75 resultados para plasma light propagation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-harmonic generation (HHG) by nonlinear interaction of intense laser pulses with gases or plasma surfaces is the most prominent way of creating highly coherent extreme ultraviolet (EUV/XUV) pulses. In the last years, several scientific applications have been found which require the measurement of the polarization of the harmonic radiation. We present a broadband XUV polarimeter based on multiple Fresnel reflections providing an extinction rate of 5-25 for 17-45 nm which is particularly suited for surface harmonics. The device has first been tested at a gas harmonic source providing linearly polarized XUV radiation. In a further experiment using HHG from plasma surfaces, the XUV polarimeter allowed a polarization measurement of high harmonic radiation from plasma surfaces for the first time which reveals a linear polarization state as predicted for our generation parameters. The generation and control of intense polarized XUV pulses-together with the availability of broadband polarizers in the XUV-open the way for a series of new experiments. For instance, dichroism in the XUV, elliptically polarized harmonics from aligned molecules, or the selection rules of relativistic surface harmonics can be studied with the broadband XUV polarimeter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interaction of a stream of high-energy electrons with the background plasma plays an important role in the astrophysical phenomena such as interplanetary and stellar bow shock and Earth's foreshock emission. It is not yet fully understood how electrostatic solitary waves are produced at the bow shock. Interestingly, a population of energetic suprathermal electrons were also found to exist in those environments. Previously, we have studied the properties of negative electrostatic potential solitary structures exist in such a plasma with excess suprathermal electrons. In the present study, we investigate the existence conditions and propagation properties of electron-acoustic solitary waves in a plasma consisting of an electron beam fluid, a cold electron fluid, and hot suprathermal electrons modeled by a kappa-distribution function. The Sagdeev pseudopotential method was used to investigate the occurrence of stationary-profile solitary waves. We have determined how the electron-acoustic soliton characteristics depend on the electron beam parameters. It is found that the existence domain for solitons becomes narrower with an increase in the suprathermality of hot electrons, increasing the beam speed, decreasing the beam-to-cold electron population ratio. These results lead to a better understanding of the formation of electron-acoustic solitary waves observed in those space plasma systems characterized by kappa-distributed electrons and inertial drifting (beam) electrons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrashort, high contrast laser pulses when focused to high intensity and reflected from a steep solid density 'plasma mirror (PM)' contain coherent XUV radiation in the form of high-order harmonics. The emission can either be due to the relativistically driven oscillating PM (ROM) [1] or due to Coherent wake emission (CWE) [2]. Selective control over the mechanisms and the characteristics of these harmonics and understanding the physics is crucial for the development of intense attosecond light sources. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the existence conditions and propagation properties of electron-acoustic solitary waves in a plasma consisting of an electron beam fluid, a cold electron fluid, and a hot suprathermal electron component modeled by a k-distribution function. The Sagdeev pseudopotential method was used to investigate the occurrence of stationary-profile solitary waves. We have determined how the soliton characteristics depend on the electron beam parameters. It is found that the existence domain for solitons becomes narrower with an increase in the suprathermality of hot electrons, increasing the beam speed, and decreasing the beam-to-cold electron population ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combined effect of special relativity and electron degeneracy on Langmuir waves is analyzed by utilizing a rigorous fully relativistic hydrodynamic model. Assuming a traveling wave solution form, a set of conservation laws is identified, together with a pseudo-potential function depending on the relativistic parameter p<inf>F</inf>/(m c) (where p<inf>F</inf> is the Fermi momentum, m is the mass of the charge carriers and c the speed of light), as well as on the amplitude of the electrostatic energy perturbation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Propagation of intense circularly polarized laser pulses in strongly magnetized inhomogeneous plasmas is investigated. It is shown that a left-hand circularly polarized laser pulse propagating up the density gradient of the plasma along the magnetic field is reflected at the left-cutoff density. However, a right-hand circularly polarized laser can penetrate up the density gradient deep into the plasma without cutoff or resonance and turbulently heat the electrons trapped in its wake. Results from particle-in-cell simulations are in good agreement with that from the theory. (c) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The collective response of charged particles to intense fields is intrinsic to plasma accelerators and radiation sources, relativistic optics and many astrophysical phenomena. Here we show that a relativistic plasma aperture is generated in thin foils by intense laser light, resulting in the fundamental optical process of diffraction. The plasma electrons collectively respond to the resulting laser near-field diffraction pattern, producing a beam of energetic electrons with a spatial structure that can be controlled by variation of the laser pulse parameters. It is shown that static electron-beam and induced-magnetic-field structures can be made to rotate at fixed or variable angular frequencies depending on the degree of ellipticity in the laser polarization. The concept is demonstrated numerically and verified experimentally, and is an important step towards optical control of charged particle dynamics in laser-driven dense plasma sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

State-of-the-art high power lasers can exert immense pressure on thin foils which can be used to accelerate energetic ion beams efficiently at the laser plasma interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade an Auburn-Rollins-Strathclyde consortium has developed several suites of parallel R-matrix codes [1, 2, 3] that can meet the fundamental data needs required for the interpretation of astrophysical observation and/or plasma experiments. Traditionally our collisional work on light fusion-related atoms has been focused towards spectroscopy and impurity transport for magnetically confined fusion devices. Our approach has been to provide a comprehensive data set for the excitation/ionization for every ion stage of a particular element. As we progress towards a burning fusion plasma, there is a demand for the collisional processes involving tungsten, which has required a revitalization of the relativistic R-matrix approach. The implementation of these codes on massively parallel supercomputers has facilitated the progression to models involving thousands of levels in the close-coupling expansion required by the open d and f sub-shell systems of mid Z tungsten. This work also complements the electron-impact excitation of Fe-Peak elements required by astrophysics, in particular the near neutral species, which offer similar atomic structure challenges. Although electron-impact excitation work is our primary focus in terms of fusion application, the single photon photoionisation codes are also being developed in tandem, and benefit greatly from this ongoing work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent measurements using an X-ray Free Electron Laser (XFEL) and an Electron Beam Ion Trap at the Linac Coherent Light Source facility highlighted large discrepancies between the observed and theoretical values for the Fe XVII 3C/3D line intensity ratio. This result raised the question of whether the theoretical oscillator strengths may be significantly in error, due to insufficiencies in the atomic structure calculations. We present time-dependent spectral modeling of this experiment and show that non-equilibrium effects can dramatically reduce the predicted 3C/3D line intensity ratio, compared with that obtained by simply taking the ratio of oscillator strengths. Once these non-equilibrium effects are accounted for, the measured line intensity ratio can be used to determine a revised value for the 3C/3D oscillator strength ratio, giving a range from 3.0 to 3.5. We also provide a framework to narrow this range further, if more precise information about the pulse parameters can be determined. We discuss the implications of the new results for the use of Fe XVII spectral features as astrophysical diagnostics and investigate the importance of time-dependent effects in interpreting XFEL-excited plasmas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims/hypothesis: We aimed to determine whether plasma lipoproteins, after leakage into the retina and modification by glycation and oxidation, contribute to the development of diabetic retinopathy in a mouse model of type 1 diabetes.

Methods: To simulate permeation of plasma lipoproteins intoretinal tissues, streptozotocin-induced mouse models of diabetes and non-diabetic mice were challenged with intravitreal injection of human ‘highly-oxidised glycated’ low-density lipoprotein (HOG-LDL), native- (N-) LDL, or the vehicle PBS.Retinal histology, electroretinography (ERG) and biochemical markers were assessed over the subsequent 14 days.

Results: Intravitreal administration of N-LDL and PBS had noeffect on retinal structure or function in either diabetic or non-diabetic animals. In non-diabetic mice, HOG-LDL elicited a transient inflammatory response without altering retinal function,but in diabetic mice it caused severe, progressive retinal injury, with abnormal morphology, ERG changes, vascular leakage, vascular endothelial growth factor overexpression, gliosis, endoplasmic reticulum stress, and propensity to apoptosis.

Conclusions/interpretation: Diabetes confers susceptibility to retinal injury imposed by intravitreal injection of modified LDL. The data add to the existing evidence that extravasated, modified plasma lipoproteins contribute to the propagation of diabetic retinopathy. Intravitreal delivery of HOG-LDL simulates a stress known to be present, in addition to hyperglycaemia, in human diabetic retinopathy once blood retinal barriers are compromised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few micron and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of
relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increases in free light chain (FLC) production are associated with disease progression in multiple myeloma (MM). Using a double immunofluorescence staining method to produce a differential count of plasma cells in bone marrow, single populations were demonstrated, containing intact monoclonal immunoglobulins (M-Igs) in 74% and FLCs only in 8% of cases. However, 18% contained a mixture of both cell populations. Progression from cells making intact M-Ig to cells restricted to FLC only production occurred in individual cases during the course of their disease. The presence of FLC only cells was associated with shortened survival.