75 resultados para perylene carboximides, polyphenylene dendrimers, light harvesting systems, single molecule spectroscopy, single photon sources, molecular wire


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, an analysis of radio channel characteristics for single- and multiple-antenna bodyworn systems for use in body-to-body communications is presented. The work was based on an extensive measurement campaign conducted at 2.45 GHz representative of an indoor sweep and search scenario for fire and rescue personnel. Using maximum-likelihood estimation in conjunction with the Akaike information criterion (AIC), five candidate probability distributions were investigated and from these the kappa - mu distribution was found to best describe small-scale fading observed in the body-to-body channels. Additional channel parameters such as autocorrelation and the cross-correlation coefficient between fading signal envelopes were also analyzed. Low cross correlation and small differences in mean signal levels between potential dual-branch diversity receivers suggested that the prospect of successfully implementing diversity in this type application is extremely good. Moreover, using selection combination, maximal ratio, and equal gain combining, up to 8.69-dB diversity gain can be made available when four spatially separated antennas are used at the receiver. Additional improvements in the combined envelopes through lower level crossing rates and fade durations at low signal levels were also observed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we propose a novel linear transmit precoding strategy for multiple-input, multiple-output (MIMO) systems employing improper signal constellations. In particular, improved zero-forcing (ZF) and minimum mean square error (MMSE) precoders are derived based on modified cost functions, and are shown to achieve a superior performance without loss of spectrum efficiency compared to the conventional linear and nonlinear precoders. The superiority of the proposed precoders over the conventional solutions are verified by both simulation and analytical results. The novel approach to precoding design is also applied to the case of an imperfect channel estimate with a known error covariance as well as to the multi-user scenario where precoding based on the nullspace of channel transmission matrix is employed to decouple multi-user channels. In both cases, the improved precoding schemes yield significant performance gain compared to the conventional counterparts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Light transmission through a single subwavelength aperture in a silver film is examined with a novel input configuration comprising an annular laser beam of variable diameter that is prism-coupled to the back face of the silver. Transmission peaks driven by excitation of the back-face surface plasmon mode or by the aperture resonance itself are separately observed. For both cases, comparison of films with and without a front-face, circular grating implies significantly more efficient coupling from the aperture fields to the front-face surface plasmon than directly to free radiation. (c) 2007 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe a new ab initio method for solving the time-dependent Schrödinger equation for multi-electron atomic systems exposed to intense short-pulse laser light. We call the method the R-matrix with time-dependence (RMT) method. Our starting point is a finite-difference numerical integrator (HELIUM), which has proved successful at describing few-electron atoms and atomic ions in strong laser fields with high accuracy. By exploiting the R-matrix division-of-space concept, we bring together a numerical method most appropriate to the multi-electron finite inner region (R-matrix basis set) and a different numerical method most appropriate to the one-electron outer region (finite difference). In order to exploit massively parallel supercomputers efficiently, we time-propagate the wavefunction in both regions by employing Arnoldi methods, originally developed for HELIUM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the impact of interference from multiple licensed transceivers on cognitive underlay single carrier systems is examined. Specifically, the situation is considered in which the secondary network is limited by three key parameters: 1) maximum transmit power at the secondary transmitter, 2) peak interference power at the primary receivers, and 3) interference power from the primary transmitters. For this cognitive underlay single carrier system, the signal-to-interference ratio (SIR) of the secondary network is obtained for transmission over frequency selective fading channels. Based on this, a new closedform expression for the cumulative distribution function of the SIR is evaluated, from which the outage probability and the ergodic capacity are derived. Further insights are established by analyzing the asymptotic outage probability and the asymptotic ergodic capacity in the high transmission power regime. In particular, it is corroborated that the asymptotic outage diversity gain is equal to the multipath gain of the frequency selective channel in the secondary network. The asymptotic ergodic capacity also gives new insight into the additional power cost for different network parameters while maintaining a specified target ergodic capacity. Illustrative numerical examples are presented to validate the outage probability and ergodic capacity under different interference power profiles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the impact of multiple active eavesdroppers on cooperative single carrier systems with multiple relays and multiple destinations is examined. To achieve the secrecy diversity gains in the form of opportunistic selection, a two-stage scheme is proposed for joint relay and destination selection, in which, after the selection of the relay with the minimum effective maximum signal-to-noise ratio (SNR) to a cluster of eavesdroppers, the destination that has the maximum SNR from the chosen relay is selected. In order to accurately assess the secrecy performance, the exact and asymptotic expressions are obtained in closed-form for several security metrics including the secrecy outage probability, the probability of non-zero secrecy rate, and the ergodic secrecy rate in frequency selective fading. Based on the asymptotic analysis, key design parameters such as secrecy diversity gain, secrecy array gain, secrecy multiplexing gain, and power cost are characterized, from which new insights are drawn. Moreover, it is concluded that secrecy performance limits occur when the average received power at the eavesdropper is proportional to the counterpart at the destination. Specifically, for the secrecy outage probability, it is confirmed that the secrecy diversity gain collapses to zero with outage floor, whereas for the ergodic secrecy rate, it is confirmed confirm that its slope collapses to zero with capacity ceiling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we propose cyclic prefix single carrier (CP-SC) full-duplex transmission in cooperative spectrum sharing to achieve multipath diversity gain and full-duplex spectral efficiency. Integrating full-duplex transmission into cooperative spectrum sharing systems results in two intrinsic problems: 1) the peak interference power constraint at the PUs are concurrently inflicted on the transmit power at the secondary source (SS) and the secondary relays (SRs); and 2) the residual loop interference occurs between the transmit and the receive antennas at the secondary relays. Thus, examining the effects of residual loop interference under peak interference power constraint at the primary users and maximum transmit power constraints at the SS and the SRs is a particularly challenging problem in frequency selective fading channels. To do so, we derive and quantitatively evaluate the exact and the asymptotic outage probability for several relay selection policies in frequency selective fading channels. Our results manifest that a zero diversity gain is obtained with full-duplex.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The biosorption process of anionic dye Alizarin Red S (ARS) and cationic dye methylene blue (MB) as a function of contact time, initial concentration and solution pH onto olive stone (OS) biomass has been investigated. Equilibrium biosorption isotherms in single and binary systems and kinetics in batch mode were also examined. The kinetic data of the two dyes were better described by the pseudo second-order model. At low concentration, ARS dye appeared to follow a two-step diffusion process, while MB dye followed a three-step diffusion process. The biosorption experimental data for ARS and MB dyes were well suited to the Redlich-Peterson isotherm. The maximum biosorption of ARS dye, qmax = 16.10 mg/g, was obtained at pH 3.28 and the maximum biosorption of MB dye, qmax = 13.20 mg/g, was observed at basic pH values. In the binary system, it was indicated that the MB dye diffuses firstly inside the biosorbent particle and occupies the biosorption sites forming a monodentate complex and then the ARS dye enters and can only bind to untaken sites; forms a tridentate complex with OS active sites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a three-node decode-and-forward (DF) half-duplex relaying system, where the source first harvests RF energy from the relay, and then uses this energy to transmit information to the destination via the relay. We assume that the information transfer and wireless power transfer phases alternate over time in the same frequency band, and their time fraction (TF) may change or be fixed from one transmission epoch (fading state) to the next. For this system, we maximize the achievable average data rate. Thereby, we propose two schemes: (1) jointly optimal power and TF allocation, and (2) optimal power allocation with fixed TF. Due to the small amounts of harvested power at the source, the two schemes achieve similar information rates, but yield significant performance gains compared to a benchmark system with fixed power and fixed TF allocation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose cyclic prefix single carrier full-duplex transmission in amplify-and-forward cooperative spectrum sharing networks to achieve multipath diversity and full-duplex spectral efficiency. Integrating full-duplex transmission into cooperative spectrum sharing systems results in two intrinsic problems: 1) the residual loop interference occurs between the transmit and the receive antennas at the secondary relays and 2) the primary users simultaneously suffer interference from the secondary source (SS) and the secondary relays (SRs). Thus, examining the effects of residual loop interference under peak interference power constraint at the primary users and maximum transmit power constraints at the SS and the SRs is a particularly challenging problem in frequency selective fading channels. To do so, we derive and quantitatively compare the lower bounds on the outage probability and the corresponding asymptotic outage probability for max–min relay selection, partial relay selection, and maximum interference relay selection policies in frequency selective fading channels. To facilitate comparison, we provide the corresponding analysis for half-duplex. Our results show two complementary regions, named as the signal-to-noise ratio (SNR) dominant region and the residual loop interference dominant region, where the multipath diversity and spatial diversity can be achievable only in the SNR dominant region, however the diversity gain collapses to zero in the residual loop interference dominant region.