108 resultados para pacs: local area networks
Resumo:
In this paper, we introduce a novel approach to face recognition which simultaneously tackles three combined challenges: 1) uneven illumination; 2) partial occlusion; and 3) limited training data. The new approach performs lighting normalization, occlusion de-emphasis and finally face recognition, based on finding the largest matching area (LMA) at each point on the face, as opposed to traditional fixed-size local area-based approaches. Robustness is achieved with novel approaches for feature extraction, LMA-based face image comparison and unseen data modeling. On the extended YaleB and AR face databases for face identification, our method using only a single training image per person, outperforms other methods using a single training image, and matches or exceeds methods which require multiple training images. On the labeled faces in the wild face verification database, our method outperforms comparable unsupervised methods. We also show that the new method performs competitively even when the training images are corrupted.
Resumo:
To evaluate the performance of the co-channel transmission based communication, we propose a new metric for area spectral efficiency (ASE) of interference limited ad-hoc network by assuming that the nodes are randomly distributed according to a Poisson point processes (PPP). We introduce a utility function, U = ASE/delay and derive the optimal ALOHA transmission probability p and the SIR threshold τ that jointly maximize the ASE and minimize the local delay. Finally, numerical results have been conducted to confirm that the joint optimization based on the U metric achieves a significant performance gain compared to conventional systems.
Resumo:
The purpose of this study is to compare the inferability of various synthetic as well as real biological regulatory networks. In order to assess differences we apply local network-based measures. That means, instead of applying global measures, we investigate and assess an inference algorithm locally, on the level of individual edges and subnetworks. We demonstrate the behaviour of our local network-based measures with respect to different regulatory networks by conducting large-scale simulations. As inference algorithm we use exemplarily ARACNE. The results from our exploratory analysis allow us not only to gain new insights into the strength and weakness of an inference algorithm with respect to characteristics of different regulatory networks, but also to obtain information that could be used to design novel problem-specific statistical estimators.
Resumo:
In this paper we define the structural information content of graphs as their corresponding graph entropy. This definition is based on local vertex functionals obtained by calculating-spheres via the algorithm of Dijkstra. We prove that the graph entropy and, hence, the local vertex functionals can be computed with polynomial time complexity enabling the application of our measure for large graphs. In this paper we present numerical results for the graph entropy of chemical graphs and discuss resulting properties. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We present a general method to undertake a thorough analysis of the thermodynamics of the quantum jump trajectories followed by an arbitrary quantum harmonic network undergoing linear and bilinear dynamics. The approach is based on the phase-space representation of the state of a harmonic network. The large deviation function associated with this system encodes the full counting statistics of exchange and also allows one to deduce for fluctuation theorems obeyed by the dynamics. We illustrate the method showing the validity of a local fluctuation theorem about the exchange of excitations between a restricted part of the environment (i.e., a local bath) and a harmonic network coupled with different schemes.
Resumo:
The goal of this contribution is to discuss local computation in credal networks — graphical models that can represent imprecise and indeterminate probability values. We analyze the inference problem in credal networks, discuss how inference algorithms can benefit from local computation, and suggest that local computation can be particularly important in approximate inference algorithms.
Resumo:
This paper develops an integrated optimal power flow (OPF) tool for distribution networks in two spatial scales. In the local scale, the distribution network, the natural gas network, and the heat system are coordinated as a microgrid. In the urban scale, the impact of natural gas network is considered as constraints for the distribution network operation. The proposed approach incorporates unbalance three-phase electrical systems, natural gas systems, and combined cooling, heating, and power systems. The interactions among the above three energy systems are described by energy hub model combined with components capacity constraints. In order to efficiently accommodate the nonlinear constraint optimization problem, particle swarm optimization algorithm is employed to set the control variables in the OPF problem. Numerical studies indicate that by using the OPF method, the distribution network can be economically operated. Also, the tie-line power can be effectively managed.
Resumo:
This letter reports the statistical characterization and modeling of the indoor radio channel for a mobile wireless personal area network operating at 868 MHz. Line of sight (LOS) and non-LOS conditions were considered for three environments: anechoic chamber, open office area and hallway. Overall, the Nakagami-m cdf best described fading for bodyworn operation in 60% of all measured channels in anechoic chamber and open office area environments. The Nakagami distribution was also found to provide a good description of Rician distributed channels which predominated in the hallway. Multipath played an important role in channel statistics with the mean recorded m value being reduced from 7.8 in the anechoic chamber to 1.3 in both the open office area and hallway.
Resumo:
This paper reports the findings of research into the representation of local interests in area-based urban regeneration programmes in Northern Ireland and the Republic of Ireland. The two case studies are contextualised by a review of the promotion of public participation in urban regeneration in both parts of Ireland and theorised as a site of interaction between state agencies and civil society. It is argued that the practice of public participation is a hegemonic project, which, within urban regeneration, is operationalised through partnership structures. The paper concludes that many factors from within and outside the case study programmes affected their consultation processes. Therefore the design and implementation of regeneration programmes should be undertaken in the context of an understanding of the relationship between the state and civil society in the empirical case.
Resumo:
The development of wideband network services and the new network infrastructures to support them have placed much more requirements on current network management systems. Issues such as scalability, integrity and interoperability have become more important. Existing management systems are not flexible enough to support the provision of Quality of Service (QoS) in these dynamic environments. The concept of Programmable Networks has been proposed to address these requirements. Within this framework, CORBA is regarded as a middleware technology that can enable interoperation among the distributed entities founds in Programmable Networks. By using the basic CORBA environment in a heterogeneous network environment, a network manager is able to control remote Network Elements (NEs) in the same way it controls its local resources. Using this approach both the flexibility and intelligence of the overall network management can be improved. This paper proposes the use of two advanced features of CORBA to enhance the QoS management in a Programmable Network environment. The Transaction Service can be used to manage a set of tasks, whenever the management of elements in a network is correlated; and the Concurrency Service can be used to coordinate multiple accesses on the same network resources. It is also shown in this paper that proper use of CORBA can largely reduce the development and administration of network management applications.
Resumo:
A conventional local model (LM) network consists of a set of affine local models blended together using appropriate weighting functions. Such networks have poor interpretability since the dynamics of the blended network are only weakly related to the underlying local models. In contrast, velocity-based LM networks employ strictly linear local models to provide a transparent framework for nonlinear modelling in which the global dynamics are a simple linear combination of the local model dynamics. A novel approach for constructing continuous-time velocity-based networks from plant data is presented. Key issues including continuous-time parameter estimation, correct realisation of the velocity-based local models and avoidance of the input derivative are all addressed. Application results are reported for the highly nonlinear simulated continuous stirred tank reactor process.