96 resultados para optimal punishments
Resumo:
Reliable detection of JAK2-V617F is critical for accurate diagnosis of myeloproliferative neoplasms (MPNs); in addition, sensitive mutation-specific assays can be applied to monitor disease response. However, there has been no consistent approach to JAK2-V617F detection, with assays varying markedly in performance, affecting clinical utility. Therefore, we established a network of 12 laboratories from seven countries to systematically evaluate nine different DNA-based quantitative PCR (qPCR) assays, including those in widespread clinical use. Seven quality control rounds involving over 21,500 qPCR reactions were undertaken using centrally distributed cell line dilutions and plasmid controls. The two best-performing assays were tested on normal blood samples (n=100) to evaluate assay specificity, followed by analysis of serial samples from 28 patients transplanted for JAK2-V617F-positive disease. The most sensitive assay, which performed consistently across a range of qPCR platforms, predicted outcome following transplant, with the mutant allele detected a median of 22 weeks (range 6-85 weeks) before relapse. Four of seven patients achieved molecular remission following donor lymphocyte infusion, indicative of a graft vs MPN effect. This study has established a robust, reliable assay for sensitive JAK2-V617F detection, suitable for assessing response in clinical trials, predicting outcome and guiding management of patients undergoing allogeneic transplant.
Resumo:
We analyze the production of defects during the dynamical crossing of a mean-field phase transition with a real order parameter. When the parameter that brings the system across the critical point changes in time according to a power-law schedule, we recover the predictions dictated by the well-known Kibble-Zurek theory. For a fixed duration of the evolution, we show that the average number of defects can be drastically reduced for a very large but finite system, by optimizing the time dependence of the driving using optimal control techniques. Furthermore, the optimized protocol is robust against small fluctuations.
Resumo:
The fundamental understanding of the activity in heterogeneous catalysis has long been the major subject in chemistry. This paper shows the development of a two-step model to understand this activity. Using the theory of chemical potential kinetics with Bronsted-Evans-Polanyi relations, the general adsorption energy window is determined from volcano curves, using which the best catalysts can be searched. Significant insights into the reasons for catalytic activity are obtained.
Resumo:
We consider the problem of secure transmission in two-hop amplify-and-forward untrusted relay networks. We analyze the ergodic secrecy capacity (ESC) and present compact expressions for the ESC in the high signal-to-noise ratio regime. We also examine the impact of large scale antenna arrays at either the source or the destination. For large antenna arrays at the source, we confirm that the ESC is solely determined by the channel between the relay and the destination. For very large antenna arrays at the destination, we confirm that the ESC is solely determined by the channel between the source and the relay.
Resumo:
We consider a model of an on-line software market, where an intermediary distributes products from sellers to buyers. When products of sellers are vertically differentiated, an intermediary, earning a proportion of sales, has an incentive to hide the worse product on the second page, and only keep the better product on the front page: that weakens the competition, allowing the seller with the better product to charge a higher price. With heterogeneous visiting costs to the second page, the platform's revenue might improve, but the outcome will become socially suboptimal.
Resumo:
Haematological malignancies (HM) represent over 6% of the total cancer incidence in Europe and affect all ages, ranging between 45% of all cancers in children and 7% in the elderly. Thirty per cent of childhood cancer deaths are due to HM, 8% in the elderly. Their registration presents specific challenges, mainly because HM may transform or progress in the course of the disease into other types of HM. In the context of cancer registration decisions have to be made about classifying subsequent notifications on the same patient as the same tumour (progression), a transformation or a new tumour registration. Allocation of incidence date and method of diagnosis must also be standardised. We developed European Network of Cancer Registries (ENCR) recommendations providing specific advice for cancer registries to use haematology and molecular laboratories as data sources, conserve the original date of incidence in case of change of diagnosis, make provision for recording both the original as well as transformed tumour and to apply precise rules for recording and counting multiple diagnoses. A reference table advising on codes which reflect a potential transformation or a new tumour is included. This work will help to improve comparability of data produced by population-based cancer registries, which are indispensable for aetiological research, health care planning and clinical research, an increasing important area with the application of targeted therapies.
Resumo:
Previous studies on work instruction delivery for complex assembly tasks have shown that the mode and delivery method for the instructions in an engineering context can influence both build time and product quality. The benefits of digital, animated instructional formats when compared to static pictures and text only formats have already been demonstrated. Although pictograms have found applications for relatively straight forward operations and activities, their applicability to relatively complex assembly tasks has yet to be demonstrated. This study compares animated instructions and pictograms for the assembly of an aircraft panel. Based around a series of build experiments, the work records build time as well as the number of media references to measure and compare build efficiency. The number of build errors and the time required to correct them is also recorded. The experiments included five participants completing five builds over five consecutive days for each media type. Results showed that on average the total build time was 13.1% lower for the group using animated instructions. The benefit of animated instructions on build time was most prominent in the first three builds, by build four this benefit had disappeared. There were a similar number of instructional references for the two groups over the five builds but the pictogram users required a lot more references during build 1. There were more errors among the group using pictograms requiring more time for corrections during the build.
Resumo:
We consider the uplink of massive multicell multiple-input multiple-output systems, where the base stations (BSs), equipped with massive arrays, serve simultaneously several terminals in the same frequency band. We assume that the BS estimates the channel from uplink training, and then uses the maximum ratio combining technique to detect the signals transmitted from all terminals in its own cell. We propose an optimal resource allocation scheme which jointly selects the training duration, training signal power, and data signal power in order to maximize the sum spectral efficiency, for a given total energy budget spent in a coherence interval. Numerical results verify the benefits of the optimal resource allocation scheme. Furthermore, we show that more training signal power should be used at low signal-to-noise ratio (SNRs), and vice versa at high SNRs. Interestingly, for the entire SNR regime, the optimal training duration is equal to the number of terminals.
Resumo:
During the benthic cultivation process of Mytilus edulis (blue mussels), wild mussel seed is often transplanted from naturally occurring subtidal beds to sheltered in-shore waters to be grown to a commercial size. The survival of these relaid mussels is ultimately a function of their quality and physiological condition upon relaying and it has been recognised that mussels can suffer from a loss in condition following transportation. We investigated whether the process of being transported to ongrowing plots had a negative effect on the physiological health and resultant behaviour of mussels by simulating transportation conditions in a controlled experiment. Mussels were kept, out of water, in plastic piping to recreate translocation conditions and further, we tested if depth held in a ship hold (0, 1.5 and 3 m) and length of time emersed (12, 24 and 48 h) affected mussel condition and behaviour. Physiological condition was assessed by quantifying mussel tissue pH and whole tissue glucose, glycogen, succinate and propionate concentrations. The rate of byssogenesis was also quantified to estimate recovery following a period of re-immersion. The depth at which mussels were held did not affect any of the physiological indicators of mussel stress but short-term byssus production was affected. Mussels held at 3 m produced fewer byssus threads during the first 72 h following re-immersion compared with mussels at 0 m (i.e. not buried) suggesting that depth held can impede recovery following transportation. Duration of emersion affected all stress indicators. Specifically, mussels held out of water for 48 h had a reduced physiological condition compared with those emersed for just 12 h. This work has practical implications for the benthic cultivation industry and based on these results we recommend that mussels are held out of water for less than 24 h prior to relaying to ensure physiological health and resultant condition is preserved.
Resumo:
In this paper, we propose a novel finite impulse response (FIR) filter design methodology that reduces the number of operations with a motivation to reduce power consumption and enhance performance. The novelty of our approach lies in the generation of filter coefficients such that they conform to a given low-power architecture, while meeting the given filter specifications. The proposed algorithm is formulated as a mixed integer linear programming problem that minimizes chebychev error and synthesizes coefficients which consist of pre-specified alphabets. The new modified coefficients can be used for low-power VLSI implementation of vector scaling operations such as FIR filtering using computation sharing multiplier (CSHM). Simulations in 0.25um technology show that CSHM FIR filter architecture can result in 55% power and 34% speed improvement compared to carry save multiplier (CSAM) based filters.
Resumo:
We develop a continuous-time asset price model to capture the timeseries momentum documented recently. The underlying stochastic delay differentialsystem facilitates the analysis of effects of different time horizons used bymomentum trading. By studying an optimal asset allocation problem, we find thatthe performance of time series momentum strategy can be significantly improvedby combining with market fundamentals and timing opportunity with respect tomarket trend and volatility. Furthermore, the results also hold for different timehorizons, the out-of-sample tests and with short-sale constraints. The outperformanceof the optimal strategy is immune to market states, investor sentiment andmarket volatility.