66 resultados para octadecyl trimethylammonium bromide
Resumo:
A wide range of room temperature ionic liquids based on the 3-methylpiperdinium cation core were produced from 3-methylpiperidine, which is a derivative of DYTEK® A amine. First, reaction with 1-bromoalkanes or 1-bromoalkoxyalkanes generated the corresponding tertiary amines (Rmβpip, R = alkyl or alkoxyalkyl); further quaternisation reactions with the appropriate methylating agents yielded the quaternary [Rmmβpip]X salts (X(-) = I(-), [CF3CO2](-) or [OTf](-); Tf = -SO2CF3), and [Rmmβpip][NTf2] were prepared by anion metathesis from the corresponding iodides. All [NTf2](-) salts are liquids at room temperature. [Rmmβpip]X (X(-) = I(-), [CF3CO2](-) or [OTf](-)) are low-melting solids when R = alkyl, but room temperature liquids upon introduction of ether functionalities on R. Neither of the 3-methylpiperdinium ionic liquids showed any signs of crystallisation, even well below 0 °C. Some related non-C-substituted piperidinium and pyrrolidinium analogues were prepared and studied for comparison. Crystal structures of 1-hexyl-1,3-dimethylpiperidinium tetraphenylborate, 1-butyl-3-methylpiperidinium bromide, 1-(2-methoxyethyl)-1-methylpiperidinium chloride and 1-(2-methoxyethyl)-1-methylpyrrolidinium bromide are reported. Extensive structural and physical data are collected and compared to literature data, with special emphasis on the systematic study of the cation ring size and/or asymmetry effects on density, viscosity and ionic conductivity, allowing general trends to be outlined. Cyclic voltammetry shows that 3-methylpiperidinium ionic liquids, similarly to azepanium, piperidinium or pyrrolidinium counterparts, are extremely electrochemically stable; the portfolio of useful alternatives for safe and high-performing electrolytes is thus greatly extended.
Resumo:
Modification of citrate and hydroxylamine reduced Ag colloids with thiocholine bromide, a thiol functionalized quaternary ammonium salt, creates particles where the zeta potential is switched from the normal values of ca. -50 mV to ca. + 50 mV. These colloids are stable but can be aggregated with metal salts in much the same way as the parent colloids. They are excellent SERS substrates for detection of anionic targets since their positive zeta potentials promote adsorption of negatively charged ions. This is important because the vast majority of published SERS studies involve cationic or neutral targets. Moreover, the fact that the modifier is a quaternary ammonium ion means that the negative surface charge is maintained even at alkaline pH. The modified colloids can be used to detect compounds which cannot be detected using conventional negatively-charged citrate or hydroxylamine reduced metal nanoparticles, for example the detection limit was 5.0 x 10(-5) M for perchlorate and
Resumo:
Herein, we present a comparative study of the thermophysical properties of two homologous ionic liquids, namely, trimethyl-sulfonium bis[(trifluoromethyl) sulfonyl]imide, [S111][TFSI], and trimethyl-ammonium bis[(trifluoromethyl)sulfonyl]imide, [HN111][TFSI], and their mixtures with propylene carbonate, acetonitrile, or gamma butyrolactone as a function of temperature and composition. The influence of solvent addition on the viscosity, conductivity, and thermal properties of IL solutions was studied as a function of the solvent mole fraction from the maximum solubility of IL, xs, in each solvent to the pure solvent. In this case, xs is the composition corresponding to the maximum salt solubility in each liquid solvent at a given temperature from 258.15 to 353.15 K. The effect of temperature on the transport properties of each binary mixture was then investigated by fitting the experimental data using Arrhenius' law and the Vogel-Tamman-Fulcher (VTF) equation. The experimental data shows that the residual conductivity at low temperature, e.g., 263.15 K, of each binary mixture is exceptionally high. For example, conductivity values up to 35 and 42 mS·cm-1 were observed in the case of the [S 111][TFSI] + ACN and [HN111][TFSI] + ACN binary mixtures, respectively. Subsequently, a theoretical approach based on the conductivity and on the viscosity of electrolytes was formulated by treating the migration of ions as a dynamical process governed by ion-ion and solvent-ion interactions. Within this model, viscosity data sets were first analyzed using the Jones-Dole equation. Using this theoretical approach, excellent agreement was obtained between the experimental and calculated conductivities for the binary mixtures investigated at 298.15 K as a function of the composition up to the maximum solubility of the IL. Finally, the thermal characterization of the IL solutions, using DSC measurements, showed a number of features corresponding to different solid-solid phase transitions, TS-S, with extremely low melting entropies, indicating a strong organizational structure by easy rotation of methyl group. These ILs can be classified as plastic crystal materials and are promising as ambient-temperature solid electrolytes. © 2013 American Chemical Society.
Resumo:
Members of a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds have been shown to induce apoptosis in a number of human leukemia cell lines of different haematological lineage, suggesting their potential as anti-cancer agents. In this study, we sought to determine if PBOX-6, a well characterised member of the PBOX series of compounds, is also an effective inhibitor of breast cancer growth. Two estrogen receptor (ER)-positive (MCF-7 and T-47-D) and two ER-negative (MDA-MB-231 and SK-BR-3) cell lines were examined. The 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT) assay was used to determine reduction in cell viability. PBOX-6 reduced the cell viability of all four cell lines tested, regardless of ER status, with IC(50) values ranging from 1.0 to 2.3 microM. PBOX-6 was most effective in the SK-BR-3 cells, which express high endogenous levels of the HER-2 oncogene. Overexpression of the HER-2 oncogene has been associated with aggressive disease and resistance to chemotherapy. The mechanism of PBOX-6-induced cell death was due to apoptosis, as indicated by the increased proportion of cells in the pre-G1 peak and poly(ADP-ribose) polymerase (PARP) cleavage. Moreover, intratumoural administration of PBOX-6 (7.5 mg/kg) significantly inhibited tumour growth in vivo in a mouse mammary carcinoma model (p=0.04, n=5, Student's t-test). Thus, PBOX-6 could be a promising anti-cancer agent for both hormone-dependent and -independent breast cancers.
Resumo:
BACKGROUND: Cigarette smoking is one of the most significant risk factors in the development and further advancement of inflammatory periodontal disease, however, the role of either nicotine or its primary metabolite cotinine in the progression of periodontitis is unclear. This study aimed to investigate the effects of nicotine and cotinine on the attachment and growth of fibroblasts derived from human periodontal ligament (PDL).
METHODS: Primary cultures were prepared from the roots of extracted premolar teeth. Cells were used at both low (P3 to P5) and high (P11 to P13) passage. Cell numbers were determined over 14 days using either the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay or with a Coulter counter. Cultures were exposed to culture medium supplemented with 1) 15% fetal calf serum (FCS) only; 2) 1% FCS only; 3) 1% FCS and nicotine (concentration range 5 ng/ml to 10 mg/ml); or 4) 1% FCS and cotinine (concentration range 0.5 ng/ml to 10 microg/ml).
RESULTS: Nicotine significantly (P <0.05, by ANOVA) inhibits attachment and growth of low passage cells at concentrations >1 mg/ml and high passage PDL fibroblasts at concentrations >0.5 mg/ml. Cotinine, at the highest concentration used (10 microg/ml), appeared to inhibit attachment and growth of both low and high passage fibroblasts but this was not statistically significant (P >0.05, by ANOVA).
CONCLUSIONS: Tobacco products inhibit attachment and growth of human PDL fibroblasts. This may partly explain the role of these substances in the progression of periodontitis.
Resumo:
Introduction: Cationic, α- helical antimicrobial peptides found in skin secretions of the African Volcano Frog, Xenopus amieti include magainin-AM1, peptide glycine-leucine-amide (PGLa-AM1) and caerulein-precursor fragment (CPF-AM1). Objectives: The principle objective of this study was to determine the antibacterial activity of these peptides against a range of aerobic and anaerobic and oral pathogens. Secondary objectives were to establish their lipopolysaccharide (LPS) binding activity and determine potential cytotoxic effects against host cells. Methods: Magainin-AM1, PGLa-AM1 and CPF-AM1 were assessed for their antimicrobial activity against Fusobacteriim nucleatum, Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis and Streptococcus milleri using a double layer radial diffusion assay. The propensity for each peptide to bind LPS was determined using an indirect ELISA. The potential cytotoxicity of the peptides against human pulp cells in vitro was determined using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: Magainin-AM1, PGLa-AM1 and CPF-AM1 displayed potent antimicrobial activity against all the bacterial pathogens tested, with Magainin-AM1 being the least effective. PGLa-AM1 was most potent against S. mutans, with a minimum inhibitory concentration (MIC) of 1.2 μM. PGLa-AM1 and CPF-AM1 were both very active against F. nucleatum with MIC values of 1.5 μM and 2.2 μM respectively. The LPS binding ability of the peptides varied depending on the bacterial source of the LPS, with PGLa-AM-1 being the most effective at binding LPS. Cytotoxicity studies revealed all three peptides lacked cytotoxic effects at the concentrations tested. Conclusions: The peptides magainin-AM1, PGLa-AM1 and CPF-AM1 from the African Volcano Frog, Xenopus amieti displayed potent antimicrobial activity and LPS binding activity against a range of oral pathogens with little cytotoxic effects. These peptides merit further studies for the development of novel therapeutics to combat common oral bacterial infections.