62 resultados para nucleus-nucleus interaction potential
Resumo:
The effect of the microtubule inhibitors colchicine (1 x 10(-3) M) and tubulozole-C(1 x 10(-6) M) on the ultrastructure of adult Fasciola hepatica has been determined in vitro by transmission electron microscopy (TEM), using both intact flukes and tissue-slice material. With colchicine treatment, the apical membrane of the tegument became increasingly convoluted and blebbed, while accumulations of T1 secretory bodies occurred in the basal region of the syncytium, leading to progressively fewer secretory bodies in the syncytium. In the tegumental cells there were distinct accumulations of T1 secretory bodies around the Golgi complexes, which remained active for up to 12 h incubation. Tubulozole-treated flukes showed more severe effects, with initial accumulations of secretory bodies, both at the tegumental apex and base. This was followed in the later time-periods by the sloughing of the tegumental syncytium. In the underlying tegumental cells, the granular endoplasmic reticulum (GER) cisternae were swollen and disrupted, becoming concentrated around the nucleus. The Golgi complexes were dispersed to the periphery of the cells and gradually disappeared from the cytoplasm. After treatment with both drugs, the cell population in the vitelline follicles was altered, with an abnormally large proportion of stem cells and relatively few intermediate type 1 cells. The nurse cell cytoplasm became fragmented and was no longer in contact with the vitelline cells, while the shell globule clusters within the intermediate type 2 and mature cells were loosely packed. In the mature vitelline cells, 'yolk' globules and glycogen deposits became fewer than normal and lipid droplets were observed. The results are discussed in relation to the different modes of action of the two drugs and potential significance of this to anthelmintic (benzimidazole) therapy.
Resumo:
Cellular signal transduction in response to environmental signals involves a relay of precisely regulated signal amplifying and damping events. A prototypical signaling relay involves ligands binding to cell surface receptors and triggering the activation of downstream enzymes to ultimately affect the subcellular distribution and activity of DNA-binding proteins that regulate gene expression. These so-called signal transduction cascades have dominated our view of signaling for decades. More recently evidence has accumulated that components of these cascades can be multifunctional, in effect playing a conventional role for example as a cell surface receptor for a ligand whilst also having alternative functions for example as transcriptional regulators in the nucleus. This raises new challenges for researchers. What are the cues/triggers that determine which role such proteins play? What are the trafficking pathways which regulate the spatial distribution of such proteins so that they can perform nuclear functions and under what circumstances are these alternative functions most relevant?