97 resultados para mobile, videogame
Resumo:
This article reports on the development of an iPhone-based brain-exercise tool for seniors involving a series of focus groups (FGs) and field trials (FTs). Four FGs with 34 participants were conducted aimed at understanding the underlying motivational and de-motivational factors influencing seniors’ engagement with mobile brain-exercise software. As part of the FGs, participants had approximately 40 minutes hands-on experience with commercially available brain-exercise software. A content analysis was conducted on the data resulting in a ranking of 19 motivational factors, of which the top three were challenge, usefulness and familiarity and 15 de-motivational factors, of which the top-three were usability issues, poor communication and games that were too fast. Findings were used to inform the design of three prototype brain-exercise games for the iPhone contained within one overall application, named Brain jog. Subsequently, two FTs were conducted using Brain jog to investigate the part that time exposure has to play in shaping the factors influencing engagement. New factors arose with respect to the initial FGs including the motivational factor feedback and the de-motivational factor boring. The results of this research provide valuable guidelines for the design and evaluation of mobile brain-exercise software for seniors.
Resumo:
This paper investigates a queuing system for QoS optimization of multimedia traffic consisting of aggregated streams with diverse QoS requirements transmitted to a mobile terminal over a common downlink shared channel. The queuing system, proposed for buffer management of aggregated single-user traffic in the base station of High-Speed Downlink Packet Access (HSDPA), allows for optimum loss/delay/jitter performance for end-user multimedia traffic with delay-tolerant non-real-time streams and partially loss tolerant real-time streams. In the queuing system, the real-time stream has non-preemptive priority in service but the number of the packets in the system is restricted by a constant. The non-real-time stream has no service priority but is allowed unlimited access to the system. Both types of packets arrive in the stationary Poisson flow. Service times follow general distribution depending on the packet type. Stability condition for the model is derived. Queue length distribution for both types of customers is calculated at arbitrary epochs and service completion epochs. Loss probability for priority packets is computed. Waiting time distribution in terms of Laplace-Stieltjes transform is obtained for both types of packets. Mean waiting time and jitter are computed. Numerical examples presented demonstrate the effectiveness of the queuing system for QoS optimization of buffered end-user multimedia traffic with aggregated real-time and non-real-time streams.
Resumo:
One of the crucial aspects of disaster management of emergency situations is the early assessment of needs and damages. In most disaster situations, higher fatality and increased casualty results from lack of access to timely available emergency services rather than the initial disaster itself. This is usually caused by lack of access to the affected area in order to properly assess the situation for relevant and urgent measures. Cognitive wireless sensor networks provide an opportunity to overcome this situation especially through interconnection via mobile systems. This paper presents a cognitive wireless sensor mobile networks-based framework (CoWiSMoN), designed to offer real-time emergency services to victims and rescue personnel in event of disasters. Critical issues underlying the implementation of such a system are discussed and analyzed.
Resumo:
This paper proposes millimeter wave (mmWave) mobile broadband for achieving secure communication in downlink cellular network. Analog beamforming with phase shifters is adopted for the mmWave transmission. The secrecy throughput is analyzed based on two different transmission modes, namely delay-tolerant transmission and delay-limited transmission. The impact of large antenna arrays at the mmWave frequencies on the secrecy throughput is examined. Numerical results corroborate our analysis and show that mmWave systems can enable significant secrecy improvement. Moreover, it is indicated that with large antenna arrays, multi-gigabit per second secure link at the mmWave frequencies can be reached in the delay-tolerant transmission mode and the adverse effect of secrecy outage vanishes in the delay-limited transmission mode.
Resumo:
In the last decade, mobile phones and mobile devices using mobile cellular telecommunication network connections have become ubiquitous. In several developed countries, the penetration of such devices has surpassed 100 percent. They facilitate communication and access to large quantities of data without the requirement of a fixed location or connection. Assuming mobile phones usually are in close proximity with the user, their cellular activities and locations are indicative of the user's activities and movements. As such, those cellular devices may be considered as a large scale distributed human activity sensing platform. This paper uses mobile operator telephony data to visualize the regional flows of people across the Republic of Ireland. In addition, the use of modified Markov chains for the ranking of significant regions of interest to mobile subscribers is investigated. Methodology is then presented which demonstrates how the ranking of significant regions of interest may be used to estimate national population, results of which are found to have strong correlation with census data.