184 resultados para metabolic capacity
Resumo:
Aims/hypothesis. Maternal fuel metabolism is known to exert long range effects on the later development of children of diabetic mothers. Recently cardiovascular disease in adult life has been linked retrospectively with foetal malnutrition. The aim of this study was to identify whether markers for fuel-related cardiovascular programming exist for the offspring of diabetic pregnancy.
Resumo:
Northern Ireland is uniquely distinguished from England, Scotland and Wales, by being a society in transition, emerging from a prolonged period of civil conflict and political instability that has affected its infrastructure and has increased the need for co-ordinated and specialist research. The paper traces some of the systemic challenges and opportunities for educational research capacity-building that arise from Northern Ireland being uniquely positioned as a small polity and critically appraises how initiatives elsewhere, while providing valuable exemplars, are unlikely to transfer readily to this context. Rather, building on an expanded definition of research capacity, Northern Ireland needs to capitalize cautiously on the current climate of openness between policymaker and researcher communities to develop a shared, cohesive agenda, improve research support and harness the strengths and pockets of excellence that exist. All of these should simultaneously go towards meeting local priority research needs, addressing the developmental capacity building needs of local researcher, while at the same time contributing to local, national and international knowledge production.
Resumo:
Cooperative MIMO (Multiple Input–Multiple Output) allows multiple nodes share their antennas to emulate antenna arrays and transmit or receive cooperatively. It has the ability to increase the capacity for future wireless communication systems and it is particularly suited for ad hoc networks. In this study, based on the transmission procedure of a typical cooperative MIMO system, we first analyze the capacity of single-hop cooperative MIMO systems, and then we derive the optimal resource allocation strategy to maximize the end-to-end capacity in multi-hop cooperative MIMO systems. The study shows three implications. First, only when the intra-cluster channel is better than the inter-cluster channel, cooperative MIMO results in a capacity increment. Second, for a given scenario there is an optimal number of cooperative nodes. For instance, in our study an optimal deployment of three cooperative nodes achieve a capacity increment of 2 bps/Hz when compared with direct transmission. Third, an optimal resource allocation strategy plays a significant role in maximizing end-to-end capacity in multi-hop cooperative MIMO systems. Numerical results show that when optimal resource allocation is applied we achieve more than 20% end-to-end capacity increment in average when compared with an equal resource allocation strategy.
Resumo:
Pretty vacant: The excellent oxygen storage capacity (OSC) of ?-Ce2Zr2O8 (see picture; Ce gray, Zr green, O red) is shown to be a result of its unique structural features; after removing oxygen atoms, the structural relaxation is local (vacancy shown in brown), and both the localized structural relaxation and the number of localized structural relaxations are maximized.
Metabolic profile changes in the testes of mice with streptozotocin-induced type 1 diabetes mellitus
Resumo:
Contrary to the traditional view, recent studies suggest that diabetes mellitus has an adverse influence on male reproductive function. Our aim was to determine the effect of diabetes on the testicular environment by identifying and then assessing perturbations in small molecule metabolites. Testes were obtained from control and streptozotocin-induced diabetic C57BL/6 mice, 2, 4 and 8 weeks post-treatment. Diabetic status was confirmed by glycated haemoglobin, non-fasting blood glucose, physiological condition and body weight. A novel extraction procedure was utilized to obtain protein free, low-molecular weight, water soluble extracts which were then assessed using H-1 nuclear magnetic resonance spectroscopy. Principal component analysis of the derived profiles was used to classify any variations, and specific metabolites were identified based on their spectral pattern. Characteristic metabolite profiles were identified for control and type 1 diabetic animals with the most distinctive being from mice with the largest physical deterioration and loss of body weight. Eight streptozotocin-treated animals did not develop diabetes and displayed profiles similar to controls. Diabetic mice had decreases in creatine, choline and carnitine and increases in lactate, alanine and myo-inositol. Betaine levels were found to be increased in the majority of diabetic mice but decreased in a few animals with severe loss of body weight and physical condition. The association between perturbations in a number of small molecule metabolites known to be influential in sperm function, with diabetic status and physiological condition, adds further impetus to the proposal that diabetes influences important spermatogenic pathways and mechanisms in a subtle and previously unrecognized manner.
Resumo:
Much recent attention has focused on the GLP-1 receptor as a potential target for antidiabetic drugs. Enzyme resistant GLP-1 mimetics such as exenatide are now employed for the treatment of type 2 diabetes, but must be administered by injection. The present study has examined and compared the in vitro and in vivo metabolic actions of a small molecule GLP-1 receptor agonist 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (DMB), with native GLP-1, exenatide and liraglutide. DMB significantly stimulated in vitro insulin secretion from BRIN-BD11 cells but with decreased molar potency compared to native GLP-1 or related mimetics. Administration of DMB in combination with glucose to mice significantly (P
Resumo:
Obestatin is a peptide produced in the oxyntic mucosa of the stomach and co-localizes with ghrelin on the periphery of pancreatic islets. Several studies demonstrate that obestatin reduces food and water intake, decreases body weight gain, inhibits gastrointestinal motility, and modulates glucose-induced insulin secretion. In this study we evaluated the acute metabolic effects of human obestatin {1-23} and fragment peptides {1-10} or {11-23} in high-fat fed mice, and then investigated their solution structure by NMR spectroscopy and molecular modelling. Obestatins {1-23} and {11-23} significantly reduced food intake (86% and 90% respectively) and lowered glucose responses to feeding, whilst leaving insulin responses unchanged. No metabolic changes could be detected following the administration of obestatin (1-10). In aqueous solution none of the obestatin peptides possessed secondary structural features. However, in a 2,2,2-trifluoroethanol (TFE-d(3))-H2O solvent mixture, the structure of obestatin {1-23} was characterized by an a-helix followed by a single turn helix conformation between residues Pro(4) and Gln(15) and His(19) and Ala(22) respectively. Obestatin {1-10} showed no structural components whereas {11-23} contained an a-helix between residues Val(14) and Ser(20) in a mixed solvent. These studies are the first to elucidate the structure of human obestatin and provide clear evidence that the observed a-helical structures are critical for in vivo activity. Future structure/function studies may facilitate the design of novel therapeutic agents based on the obestatin peptide structure. (C) 2010 Elsevier Inc. All rights reserved.