94 resultados para low molecular mass lipase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

FMRFamide was isolated originally from neural-tissue extracts of a bivalve mollusc, since when either authentic FMRFamide or a series of structurally-related peptides have been isolated from representative arthropods, annelids and many additional molluscs. However, to date no information exists as to the definitive presence and primary structure of a FaRP in a free-living flatworm. Here, we report the isolation and primary structure of a FaRP from the free-living turbellarian, Artioposthia triangulata, a species from which NPF has been previously structurally-characterised. Unlike molluscs and insects, in which several FaRP a are expressed, only a single member of this family was detected in this turbellarian. The primary structure of this turbellarian FaRP was established as Arg-Tyr-Ile-Arg-Phe-NH2 (RYIRFamide) and the molecular mass as 752.7 Da. These data have established unequivocally that FaRPs occur in the nervous systems of the most phylogenetically-ancient invertebrates which display bilaterally-symmetrical neuronal plans and that authentic FMRFamide is probably not the original member of the family in molecular evolutionary terms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chicken pancreatic polypeptide is the prototype of the neuropeptide Y (NPY)/PP superfamily of regulatory peptides. This polypeptide was appended the descriptive term avian, despite the presence of some 8600 extant species of bird. Additional primary structures from other avian species, including turkey, goose and ostrich, would suggest that the primary structure of this polypeptide has been highly-conserved during avian evolution. Avian pancreatic polypeptides structurally-characterised to date have distinctive primary structural features unique to this vertebrate group including an N-terminal glycyl residue and a histidyl residue at position 34. The crow family, Corvidae, is representative of the order Passeriformes, generally regarded as the most evolutionarily recent and diverse avian taxon. Pancreatic polypeptide has been isolated from pancreatic tissues from five representative Eurasian species (the magpie, Pica pica; the jay, Garrulus glandarius; the hooded crow, Corvus corone; the rook, Corvus frugilegus; the jackdaw, Corvus monedula) and subjected to structural analyses. Mass spectroscopy estimated the molecular mass of each peptide as 4166 +/- 2 Da. The entire primary structures of 36 amino acid residue peptides were established in single gas-phase sequencing runs. The primary structures of pancreatic polypeptides from all species investigated were identical: APAQPAYPGDDAPVEDLLR-FYNDLQQYLNVVTRPRY. The peptides were deemed to be amidated due to their full molar cross-reactivity with the amide-requiring PP antiserum employed. The molecular mass (4165.6 Da), calculated from the sequences, was in close agreement with mass spectroscopy estimates. The presence of an N-terminal alanyl residue and a prolyl residue at position 34 differentiates crow PP from counterparts in other avian species. These residues are analogous to those found in most mammalian analogues. These data suggest that the term avian, appended to the chicken peptide, is no longer tenable due to the presence of an Ala1, Pro34 peptide in five species from the largest avian order. These data might also suggest that, in keeping with the known structure/activity requirements of this peptide family, crow PP should interact identically to mammalian analogues on mammalian receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using an antiserum raised to the C-terminal region of neuropeptide Y (NPY) which does not cross-react with pancreatic polypeptide (PP), immunoreactivity has been detected in two different endocrine tumours of the human pancreas in concentrations permitting isolation and structural analysis. In a clinically-typical gastrinoma, resected from the head of pancreas, the concentration of NPY immunoreactivity was 3.4 nmol/g. Reverse phase HPLC analysis of extracts of this tumour resolved a single immunoreactive peptide coeluting with synthetic human NPY. The molecular mass of the isolated peptide, determined by mass spectroscopy, was 4270 Da, which was in close agreement with that derived from the deduced primary structure of human tumour NPY (4271.7 Da), obtained by gas-phase sequencing. A somatostatinoma, resected from the region of the ampulla of Vater, contained 3.8 nmol/g of NPY immunoreactivity and isolation of this immunoreactive peptide followed by structural analyses, indicated a molecular structure consistent with NPY 3-36. These data suggest that NPY immunoreactivity detected in human pancreatic endocrine tumours is molecularly heterogenous, a finding which may be of relevance in the symptomatology of such tumours as attenuation of the N-terminus of this peptide generates receptor selectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chicken (avian) pancreatic polypeptide was the first member of the pancreatic polypeptide (PP)/neuropeptide Y (NPY) superfamily to be discovered and structurally-characterised. In this 36 amino acid residue, C-terminally amidated peptide, residues 22 and 23 were identified as Asp and Asn, respectively. However, sequencing of chicken PP using modem automated gas-phase sequencing technology has revealed that the original primary structure is incorrect in that residue 22 is Asn and that residue 23 is Asp. After digestion of chicken PP with endoproteinase Asp-N, fragments of chicken PP corresponding in molecular mass to residues 16-22 and 23-36, were unequivocally identified. The corrected primary structure of chicken PP is therefore: Gly-Pro-Ser-Gln-Pro-Thr-Tyr-Pro-Gly-Asp-Asp-Ala-Pro-Val-Glu-Asp-Leu-Ile-Arg-Phe-Tyr-Asn-Asp-Leu-Gln-Gln-Tyr-Leu-Asn-Val-Val-Thr-Arg-His-Arg-Tyr-NH2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic polypeptide (PP) has been isolated from extracts of the pancreas of the European hedgehog (Erinaceous europaeus) which is a representative of the order Insectivora, deemed to be the most primitive group of placental mammals. Pancreatic tissues were extracted in acidified ethanol and the peptide was purified chromatographically using a PP C-terminal hexapeptide amide specific radioimmunoassay to monitor purification. Two major PP-immunoreactive peptides were baseline-resolved following the final analytical reverse phase HPLC fractionation. Each was separately subjected to plasma desorption mass spectroscopy (PDMS) and gas-phase sequencing. The molecular masses of each peptide were similar: (I) 4237.6 +/- 4 Da and (II) 4238.2 +/- 4 Da. The full primary structures of each peptide were deduced and these were identical: VPLEPVYPGDNATPEQMAHYAAELRRYINMLTRPRY. The peptides were deemed to be amidated due to their full molar cross-reactivity with the amide-requiring PP antiserum employed in radioimmunoassay. The molecular mass (4233.8 Da) calculated from the sequence was in close agreemeent with PDMS estimates and the reason for the different retention times of each peptide is unknown at present. Hedgehog PP exhibits only 2 unique amino acid substitutions, at positions 1 (Val) and 19 (His), when compared with other mammalian analogues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical complexity of the defensive skin secretion of the red-eyed leaf frog, (Agalychnis callidryas), has not been elucidated in detail. During a systematic study of the skin secretion peptidomes of phyllomedusine frogs, we discovered a novel Kazal-type protein with potent trypsin inhibitory activity (Ki = 1.9 nM) that displays the highest degree of structural similarity with Kazal proteins from bony fishes. The protein was located in reverse-phase HPLC fractions following a screen of such for trypsin inhibition and subsequent partial Edman degradation of the peak active fraction derived the sequence: ATKPR-QYIVL-PRILRPV-GT. The molecular mass of the major component in this fraction was established by MALDI-TOF MS as 5893.09 Da. This partial sequence (assuming blank cycles to be Cys residues) was used to design a degenerate primer pool that was employed successfully in RACE-PCR to clone homologous precursor-encoding cDNA that encoded a mature Kazal protein of 52 amino acid residues with a computed molecular mass of 5892.82 Da. The protein was named A. callidryas Kazal trypsin inhibitor (ACKTI). BLAST analysis revealed that ACKTI contained a canonical Kazal motif (C-x(7)-C-x(6)-Y-x(3)-C-x(2,3)-C). This novel amphibian skin Kazal trypsin inhibitor adds to the spectrum of trypsin inhibitors of Kunitz- and Bowman Birk-type reported from this amphibian source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amount of lipopolysaccharide (LPS) O antigen (OAg) and its chain length distribution are important factors that protect bacteria from serum complement. Salmonella enterica serovar Typhi produces LPS with long chain length distribution (L-OAg) controlled by the wzz gene, whereas serovar Typhimurium produces LPS with two OAg chain lengths: an L-OAg controlled by Wzz(ST) and a very long (VL) OAg determined by Wzz(fepE). This study shows that serovar Enteritidis also has a bimodal OAg distribution with two preferred OAg chain lengths similar to serovar Typhimurium. It was reported previously that OAg production by S. Typhi increases at the late exponential and stationary phases of growth. The results of this study demonstrate that increased amounts of L-OAg produced by S. Typhi grown to stationary phase confer higher levels of bacterial resistance to human serum. Production of OAg by serovars Typhimurium and Enteritidis was also under growth-phase-dependent regulation; however, while the total amount of OAg increased during growth, the VL-OAg distribution remained constant. The VL-OAg distribution was primarily responsible for complement resistance, protecting the non-typhoidal serovars from the lytic action of serum irrespective of the growth phase. As a result, the non-typhoidal species were significantly more resistant than S. Typhi to human serum. When S. Typhi was transformed with a multicopy plasmid containing the S. Typhimurium wzz(fepE) gene, resistance to serum increased to levels comparable to the non-typhoidal serovars. In contrast to the relevant role for high-molecular-mass OAg molecules, the presence of Vi antigen did not contribute to serum resistance of clinical isolates of serovar Typhi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The excretory-secretory (ES) proteins of nematode parasites are of major interest as they function at the host-parasite interface and are likely to have roles crucial for successful parasitism. Furthermore, the ES proteins of intracellular nematodes such as Trichinella spiralis may also function to regulate gene expression in the host cell. In a recent proteomic analysis we identified a novel secreted cystatin-like protein from T. spiralis L1 muscle larva. Here we show that the protein, MCD-1 (multi-cystatin-like domain protein 1), contains three repeating cystatin-like domains and analysis of the mcd-1 gene structure suggests that the repeated domains arose from duplication of an ancestral cystatin gene. Cystatins are a diverse group of cysteine protease inhibitors and those secreted by parasitic nematodes are important immuno-modulatory factors. The cystatin superfamily also includes cystatin-like proteins that have no cysteine protease inhibitory activity. A recombinant MCD-1 protein expressed as a GST-fusion protein in Escherichia coli failed to inhibit papain in vitro suggesting that the T. spiralis protein is a new member of the non-inhibitory cystatin-related proteins. MCD-1 secreted from T. spiralis exists as high- and low-molecular weight isoforms and we show that a recombinant MCD-1 protein secreted by HeLa cells undergoes pH-dependent processing that may result in the release of individual cystatin-like domains. Furthermore, we found that mcd-1 gene expression is largely restricted to intracellular stages with the highest levels of expression in the adult worms. It is likely that the major role of the protein is during the intestinal stage of T. spiralis infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the C{double bond, long}O peak from 1708 to 1731 cm, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer-water interaction parameter (?) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the M of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saxitoxin (STX) is a low molecular weight neurotoxin mainly produced by certain marine dinoflagellates that, along with its family of similarly related paralytic shellfish toxins, may cause the potentially fatal intoxication known as paralytic shellfish poisoning. Illness and fatality rates are low due to the effective monitoring programs that determine when toxins exceed the established regulatory action level and effectuate shellfish harvesting closures accordingly. Such monitoring programs rely on the ability to rapidly screen large volumes of samples. Many of the screening assays currently available employ antibodies or live animals. This research focused on developing an analytical recognition element that would eliminate the challenges associated with the limited availability of antibodies and the use of animals. Here we report the discovery of a DNA aptamer that targets STX. Concentration-dependent and selective binding of the aptamer to STX was determined using a surface plasmon resonance sensor. Not only does this work represent the first reported aptamer to STX, but also the first aptamer to any marine biotoxin. A novel strategy of using a toxin-protein conjugate for DNA aptamer selection was successfully implemented to overcome the challenges associated with aptamer selection to small molecules. Taking advantage of such an approach could lead to increased diversity and accessibility of aptamers to low molecular weight toxins, which could then be incorporated as analytical recognition elements in diagnostic assays for foodborne toxin detection. The selected STX aptamer sequence is provided here, making it available to any investigator for use in assay development for the detection of STX.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) were determined in soil and vegetation following a large scale chemical fire involving 10,000 ton of polypropylene. In comparison with sites outside the plume from the fire, PAH concentrations were elevated in grass shoots (by up to 70-fold) and in soil (by up to 370-fold). The pattern of PAH dispersion under the plume was dependent on the physical-chemical properties of individual PAHs. The lighter, least hydrophobic PAHs were dispersed into the environment at greater distances than heavier, more hydrophobic PAHs. At the most distant sampling point (4.5 km) under the plume, the low molecular weight PAHs were still considerably elevated in vegetation samples compared to control sites. Dispersion appeared to be regulated by the compounds partitioning between the vapour and particulate phase, with dry particulate deposition occurring closer to the fire source than gaseous deposition. For all PAHs, the fire resulted in greater contamination of soils compared to grasses, with the relative ratio of plant/soil contamination decreasing as hydrophobicity increased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An IgM mouse monoclonal antibody (McAb) Bf4 was produced to a surface polysaccharide of Bacteroides fragilis NCTC 9343. Immunoblotting showed that McAb Bf4 reacted strongly with a high molecular mass structure which was sensitive to oxidation with periodate but resisted protease treatment. An inhibition enzyme-linked immunosorbent assay (ELISA) indicated that McAb Bf4 did not cross react with the sixteen Bacteroides species and strains tested. Cells of B. fragilis NCTC 9343 recovered from the various interfaces of a Percoll discontinuous density gradient were tested in the inhibition ELISA. Bacteria from the 0-20%, 20-40% and 40-60% interfaces inhibited the ELISA; however, cells from the 60-80% interface did not. Electron microscopy with immunogold labelling showed that McAb Bf4 did not react with the extracellular fibrous network on bacteria recovered from the 0-20% interface, or the extracellular electron dense layer on cells from the 60-80% interface; however, it was associated with a surface structure on cells from the 20-40% interface. Growth in vivo did not enrich for bacteria with this structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant microtubules are intrinsically more dynamic than those from animals. We know little about the dynamics of the interaction of plant microtubule-associated proteins (MAPs) with microtubules. Here, we have used tobacco and Arabidopsis MAPs with relative molecular mass 65 kDa (NtMAP65-1a and AtMAP65-1), to study their interaction with microtubules in vivo. Using fluorescence recovery after photobleaching we report that the turnover of both NtMAP65-1a and AtMAP65-1 bound to microtubules is four- to fivefold faster than microtubule treadmilling (13 seconds compared with 56 seconds, respectively) and that the replacement of NtMAP65-1a on microtubules is by random association rather than by translocation along microtubules. MAP65 will only bind polymerised microtubules and not its component tubulin dimers. The turnover of NtMAP65-1a and AtMAP65-1 on microtubules is similar in the interphase cortical array, the preprophase band and the phragmoplast, strongly suggesting that their role in these arrays is the same. NtMAP65-1a and AtMAP65-1 are not observed to bind microtubules in the metaphase spindle and their rate of recovery is consistent with their cytoplasmic localisation. In addition, the dramatic reappearance of NtMAP65-1a on microtubules at the spindle midzone in anaphase B suggests that NtMAP65-1a is controlled post-translationally. We conclude that the dynamic properties of these MAPs in vivo taken together with the fact that they have been shown not to effect microtubule polymerisation in vitro, makes them ideally suited to a role in crossbridging microtubules that need to retain spatial organisation in rapidly reorganising microtubule arrays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall antibiotic resistance of a bacterial population results from the combination of a wide range of susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance to antibiotics has been documented for several opportunistic Gram-negative bacteria, but the mechanism of heteroresistance is unclear. We use Burkholderia cenocepacia as a model opportunistic bacterium to investigate the implications of heterogeneity in the response to the antimicrobial peptide polymyxin B (PmB) and also other bactericidal antibiotics. Here, we report that B. cenocepacia is heteroresistant to PmB. Population analysis profiling also identified B. cenocepacia subpopulations arising from a seemingly homogenous culture that are resistant to higher levels of polymyxin B than the rest of the cells in the culture, and can protect the more sensitive cells from killing, as well as sensitive bacteria from other species, such as Pseudomonas aeruginosa and Escherichia coli. Communication of resistance depended on upregulation of putrescine synthesis and YceI, a widely conserved low-molecular weight secreted protein. Deletion of genes for the synthesis of putrescine and YceI abrogate protection, while pharmacologic inhibition of putrescine synthesis reduced resistance to polymyxin B. Polyamines and YceI were also required for heteroresistance of B. cenocepacia to various bactericidal antibiotics. We propose that putrescine and YceI resemble "danger" infochemicals whose increased production by a bacterial subpopulation, becoming more resistant to bactericidal antibiotics, communicates higher level of resistance to more sensitive members of the population of the same or different species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has recently been proposed that the combination of skin barrier impairment using microneedles (MNs) coupled with iontophoresis (ITP) may broaden the range of drugs suitable for transdermal delivery as well as enabling the rate of delivery to be achieved with precise electronic control. However, few reports exist on the combination of ITP with in situ drug-loaded polymeric MN delivery systems. Our in vitro permeation studies revealed that MN enhances transdermal drug delivery. The combination of dissolving MN and ITP did not further enhance the extent of delivery of the low molecular weight drug ibuprofen sodium after short application periods. However, the extent of peptide/protein delivery was significantly enhanced when ITP was used in combination with hydrogel-forming MN arrays. As such, hydrogel-forming MN arrays show promise for the electrically controlled transdermal delivery of biomacromolecules in a simple, one-step approach, though further technical developments will be necessary before patient benefit is realized.