241 resultados para liquids and polymers
Resumo:
Free-radical polymerization of methyl methacrylate and styrene using conventional organic initiators in the room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([ C(4)mim][PF6]) is rapid and produces polymers with molecular weights up to 10x higher than from benzene; both polymerization and isolation of products were achieved without using VOCs, offering economic as well as environmental advantages.
Resumo:
The ionic liqs. are for the dissoln. of various polymers and/or copolymers, the formation of resins and blends, and the reconstitution of polymer and/or copolymer solns., and the dissoln. and blending of functional additives and/or various polymers and/or copolymers. Thus, ≥1 ionic liq., which is a liq. salt complex that exists in the liq. phase between about -70 to 300°, is mixed with ≥2 differing polymeric materials to form a mixt., and adding a nonsolvent to the mixt. to remove the ionic liq. from the resin or blend. [on SciFinder(R)]
Resumo:
To evaluate the effect of mass transfer limitations in the three-phase oxidation of cinnamyl alcohol carried out in toluene and an ionic liquid (1-butyl-3-methyl-imidazolium bis(trifluoromethylsulphonyl)imide), studies have been performed in a rotating disc reactor and compared with those carried out in a stirred tank reactor where mass transfer effects are considered negligible. High catalyst efficiencies are found in the stirred tank reactor with the use of both ionic liquid and toluene, although there is a decrease in rate for the ionic liquid reactions. In contrast, internal pore diffusion limits the reaction in both solvents in the rotating disc reactor. This mass transfer resistance reduces the problem of overoxidation of the metal surface when the reaction is carried out in toluene, leading to significantly higher rates of reaction than expected, although at the cost of decreased selectivity.
Resumo:
The structure and dynamics of the ionic liquid 1-ethyl-3-methylimidazolium nitrate is studied by molecular dynamics simulations. We find long-range spatial correlations between the ions and a three-dimensional local structure that reflects the asymmetry of the cations. The main contribution to the configurational energy comes from the electrostatic interactions which leads to charge-ordering effects. Radial screening and threedimensional distribution of charge are also analyzed. The motion of a single ion is studied via velocity and reorientational correlation functions. It is found that ions "rattle" in a long-lived cage, while the orientational structure relaxes on a time scale longer than 200 ps. As in a supercooled liquid, the mean square displacements reveal a subdiffusive dynamics. In addition, the presence of dynamic heterogeneities can be detected by analyzing the non-Gaussian behavior of the van Hove correlation function and the spatial arrangement of the most mobile ions. The short-time collective dynamics is also studied through the electric current time correlation function.
Resumo:
Ab initio simulations of a single molecule of HCl in liquid dimethyl imidazolium chloride [dmim][Cl] show that the acidic proton exists as a symmetric, linear ClHCl- species. Details of the solvation structure around this molecule are given. The proton-transfer process was investigated by applying a force along the antisymmetric stretch coordinate until the molecule broke. Changes in the free energy and local solvation structure during this process were investigated. In the reaction mechanism identified, a free chloride approaches the proton from the side. As the original ClHCl- distorts and the incoming chloride forms a new bond to the proton, one of the original chlorine atoms is expelled and a new linear molecule is formed.
Resumo:
Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]), 1-hexyl-3-methylimidazolium chloride ([C(6)mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)mim][PF(6)]), and binary mixtures thereof, have been assigned using ab initio MP2 calculations. The previously reported anti and gauche forms of the [C(4)mim](+) cation have been observed, and this study reveals this to be a general feature of the long-chain I-alkyl derivatives. Analysis of mixtures Of [C(6)mim]Cl and [C(6)mim][PF(6)] has provided information on the nature of the hydrogen bonding between the imidazolium headgroup and the anions, and the invariance of the essentially 50:50 mixture of the predominant conformers informs on the nature of glass formation in these systems.
Liquid-phase oxidation of a pyrimidine thioether on Ti-SBA-15 and UL-TS-1 catalysts in ionic liquids
Resumo:
Aromatic monomers can be polymerised using the chloroaluminate room temperature melt obtained by mixing 1:2 ratio of cetyl pyridinium chloride and anhydrous aluminium chloride miscible in all proportions with organic solvents as an electrolyte. The chloroaluminate (AlCl4-) anion generated in this melt having a tetrahedral symmetry with equal bond lengths and bond angles is the dopant to stabilize macrocation generated near the vicinity of anode to yield better conducting and better ordered electronically conducting free standing polymer film. In this communication, we discuss the polymers derived from benzene and pyrrole and their characterization by various techniques.