71 resultados para light-scattering center super-resolution near-field structure (LSC-Super-RENS) nonlinearity
Resumo:
An acid-labile dimethaerylate acetal cross-linker,di(methacryloyloxy-l-ethoxy)methane(DMOEM), was synthesized by the reaction of 2-hydroxyethyl methacrylate and paraformaldehyde using p-toluenesulfonic acid and toluene as catalyst and solvent, respectively. Group transfer polymerization was employed to use this cross-linker in the preparation of nine hydrolyzable polymer structures: one neat cross-linker network, one randomly cross-linked network of methyl methacrylate (MMA), and seven star-shaped polymers of MMA. Gel permeation chromatography (GPC) in tetrahydrofuran (THF) confirmed the narrow molecular weight distributions of the linear polymer precursors to the stars and demonstrated the increase in molecular weight upon the addition of cross-linker for the formation of star-shaped polymers. Characterization of the star polymers in THF using static light scattering and GPC showed that the molecular weights and the number of arms of each star polymer increased with an increase in the molar ratio of cross-linker to initiator and with a decrease in the molar ratio of monomer to initiator. The star polymers with DMOEM cores bore a smaller number of arms than those cross-linked with the non-hydrolyzable commercial cross-linker ethylene glycol dimethacrylate due to the bulkier structure of DMOEM. All DMOEM-containing polymer networks and star polymers were completely hydrolyzed within 48 h using hydrochloric acid in THF.
Resumo:
In this Letter, we demonstrate how the observation of broadband frequency propagating torsional Alfvén waves in chromospheric magnetic flux tubes can provide valuable insight into their magnetic field structure. By implementing a full nonlinear three-dimensional magnetohydrodynamic numerical simulation with a realistic vortex driver, we demonstrate how the plasma structure of chromospheric magnetic flux tubes can act as a spatially dependent frequency filter for torsional Alfvén waves. Importantly, for solar magnetoseismology applications, this frequency filtering is found to be strongly dependent on magnetic field structure. With reference to an observational case study of propagating torsional Alfvén waves using spectroscopic data from the Swedish Solar Telescope, we demonstrate how the observed two-dimensional spatial distribution of maximum power Fourier frequency shows a strong correlation with our forward model. This opens the possibility of beginning an era of chromospheric magnetoseismology, to complement the more traditional methods of mapping the magnetic field structure of the solar chromosphere.
Resumo:
The well known advantages of using surface plasmons, in particular the high sensitivity to surface adsorbates, are nearly always compromised in practice by the use of monochromatic excitation and the consequent lack of proper spectroscopic information. This limitation arises from the angle/wavelength selective nature of the surface plasmon resonance. The work described here uses an elegant broadband excitation/decay scheme in a substrate(silica)-grating profiled photoresist-Ag film geometry. Laser radiation of wavelength 488 nm, incident through the silica substrate, excites by near-field coupling a broad band of surface plasmons at the photoresist-Ag interface within the spectral range of the photoresist fluorescence. With a judicious choice of grating period this mode can cross-couple to the mode supported at the Ag-air interface. This latter mode can, in turn, couple out to light by virtue of the same grating profile. The spectral distribution of the light emitted due to this three-step process has been studied as a function of the angle of emission and depth of the grating profiled surface for each polarization. It is found that the optimum emission efficiency occurs with a groove depth in the region of 65 nm. This is considerably greater than the optimum depth of 40 nm required for surface plasmon-photon coupling at a Ag-air interface or, in other words, for the last step of the process in isolation.
Resumo:
Herein, we present a facile method for the formation of monodispersed metal nanoparticles (NPs) at room temperature from M(III)Cl3 (with M = Au, Ru, Mn, Fe or V) in different media based on N,N-dimethylformamide (DMF) or water solutions containing a protic ionic liquid (PIL), namely the octylammonium formate (denoted OAF) or the bis(2-ethyl-hexyl)ammonium formate (denoted BEHAF). These two PILs present different structures and redox-active structuring properties that influence their interactions with selected molecular compounds (DMF or water), as well as the shape and the size of formed metal NPs in these solutions. Herein, the physical properties, such as the thermal, transport and micellar properties, of investigated PIL solutions were firstly investigated in order to understand the relation between PILs structure and their properties in solutions with DMF or water. The formation of metal NPs in these solutions was then characterized by using UV–vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) measurements. From our investigations, it appears that the PILs structure and their aggregation pathways in selected solvents affect strongly the formation, growths, the shape and the size of metal NPs. In fact by using this approach, the shape-/size-controlled metal NPs can be generated under mild condition. This approach suggests also a wealth of potential for these designer nanomaterials within the biomedical, materials, and catalysis communities by using designer and safer media based on PILs.
Resumo:
Herein, a facile method was developed for preparing high concentration of monodispersed gold nanoparticles (NPs) at room temperature from gold(III) chloride by using different media based on N,N-dimethylformamide or water solutions containing a protic ionic liquid (PIL), namely, the octylammonium formate or the bis(2-ethyl-hexyl)ammonium formate, based on which both PILs were used as redox-active structuring media. The formation of gold NPs in these systems was then characterized using UV-visible spectroscopy, transmission electron microscopy, and dynamic light scattering. From these investigations, it appears that the structure and aggregation pathway of PILs in selected solvents affect strongly the formation, growth, the shape, and the size of gold NPs. In fact, by using this approach, the shape-/ size-controlled gold NPs (branched and spherical) can be generated under mild condition. This approach suggests also a wealth of potential for these designer nanomaterials within the biomedical, materials, and catalysis communities by using designer and safer media based on PILs.
Resumo:
BACKGROUND: The free fatty acid receptors (FFAs), including FFA1 (orphan name: GPR40), FFA2 (GPR43) and FFA3 (GPR41) are G protein-coupled receptors (GPCRs) involved in energy and metabolic homeostasis. Understanding the structural basis of ligand binding at FFAs is an essential step toward designing potent and selective small molecule modulators.
RESULTS: We analyse earlier homology models of FFAs in light of the newly published FFA1 crystal structure co-crystallized with TAK-875, an ago-allosteric ligand, focusing on the architecture of the extracellular binding cavity and agonist-receptor interactions. The previous low-resolution homology models of FFAs were helpful in highlighting the location of the ligand binding site and the key residues for ligand anchoring. However, homology models were not accurate in establishing the nature of all ligand-receptor contacts and the precise ligand-binding mode. From analysis of structural models and mutagenesis, it appears that the position of helices 3, 4 and 5 is crucial in ligand docking. The FFA1-based homology models of FFA2 and FFA3 were constructed and used to compare the FFA subtypes. From docking studies we propose an alternative binding mode for orthosteric agonists at FFA1 and FFA2, involving the interhelical space between helices 4 and 5. This binding mode can explain mutagenesis results for residues at positions 4.56 and 5.42. The novel FFAs structural models highlight higher aromaticity of the FFA2 binding cavity and higher hydrophilicity of the FFA3 binding cavity. The role of the residues at the second extracellular loop used in mutagenesis is reanalysed. The third positively-charged residue in the binding cavity of FFAs, located in helix 2, is identified and predicted to coordinate allosteric modulators.
CONCLUSIONS: The novel structural models of FFAs provide information on specific modes of ligand binding at FFA subtypes and new suggestions for mutagenesis and ligand modification, guiding the development of novel orthosteric and allosteric chemical probes to validate the importance of FFAs in metabolic and inflammatory conditions. Using our FFA homology modelling experience, a strategy to model a GPCR, which is phylogenetically distant from GPCRs with the available crystal structures, is discussed.
Resumo:
Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of nonlinear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generation of FEL/high-field laser facilities.
Resumo:
Superlenses enable near-field imaging beyond the diffraction limit. However, their widespread implementation in optical imaging technology so far has been limited by large-scale fabrication, fixed lens position and specific object materials. Here, we demonstrate that a dielectric lamella of sub-wavelength size in all three spatial dimensions behaves as a compact superlens that operates at infrared wavelengths and can be positioned to image any local microscopic area of interest on the sample. In particular, the lamella superlens may be placed in contact with any type of object and therefore enables examination of hard-to-scan samples e.g. with high topography or in liquids, without altering the specimen design. This lamella-based local superlens design is directly applicable to sub-wavelength light-based technology such as integrated optics.
Resumo:
Purpose: To estimate the prevalence, potential determinants, and proportion of met need for near vision impairment (NVI) correctable with refraction approximately 2 years after initial examination of a multi-country cohort. Design: Population-based, prospective cohort study. Participants: People aged ≥35 years examined at baseline in semi-rural (Shunyi) and urban (Guangzhou) sites in China; rural sites in Nepal (Kaski), India (Madurai), and Niger (Dosso); a semi-urban site (Durban) in South Africa; and an urban site (Los Angeles) in the United States. Methods: Near visual acuity (NVA) with and without current near correction was measured at 40 cm using a logarithm of the minimum angle of resolution near vision tumbling E chart. Participants with uncorrected binocular NVA ≤20/40 were tested with plus sphere lenses to obtain best-corrected binocular NVA. Main Outcome Measures: Prevalence of total NVI (defined as uncorrected NVA ≤20/40) and NVI correctable and uncorrectable to >20/40, and current spectacle wearing among those with bilateral NVA ≤20/63 improving to >20/40 with near correction (met need). Results: Among 13 671 baseline participants, 10 533 (77.2%) attended the follow-up examination. The prevalence of correctable NVI increased with age from 35 to 50-60 years and then decreased at all sites. Multiple logistic regression modeling suggested that correctable NVI was not associated with gender at any site, whereas more educated persons aged >54 years were associated with a higher prevalence of correctable NVI in Nepal and India. Although near vision spectacles were provided free at baseline, wear among those who could benefit was <40% at all but 2 centers (Guangzhou and Los Angeles). Conclusions: Prevalence of correctable NVI is greatest among persons of working age, and rates of correction are low in many settings, suggesting that strategies targeting the workplace may be needed.
Resumo:
The magnetic anisotropies of a patterned, exchange biased Fe50Mn50/Ni80Fe20 system are studied using ferromagnetic resonance, supplemented by Brillouin light scattering experiments and Kerr magnetometry. The exchange biased bi-layer is partially etched into an antidot geometry so that the system approximates a Ni80 Fe20 layer in contact with antidot structured Fe50 Mn50 . Brillouin light scattering measurements of the spin wave frequency dependence on the wave vector reveal a magnonic band gap as expected for a periodic modulation of the magnetic properties. Analysis of the ferromagnetic resonance spectra reveals 8-fold and 4-fold contributions to the magnetic anisotropy. Additionally, the antidot patterning decreases the magnitude of the exchange bias and modifies strongly its angular dependence. Softening of all resonance modes is most pronounced for the applied magnetic field aligned within 10◦ of the antidot axis, in the direction of the bias. Given the degree to which one can tailor the ground state, the resulting asymmetry at low frequencies could make this an interesting candidate for applications such as selective/directional microwave filtering and multi-state magnetic logic.
Resumo:
Crystallization and determination of the high resolution three-dimensional structure of the β2-adrenergic receptor in 2007 was followed by structure elucidation of a number of other receptors, including those for neurotensin and glucagon. These major advances foster the understanding of structure-activity relationship of these receptors and structure-based rational design of new ligands having more predictable activity. At present, structure determination of gut hormone receptors in complex with their ligands (natural, synthetic) and interacting signalling proteins, for example, G-proteins, arrestins, represents a challenge which promises to revolutionize gut hormone endocrinonology.