106 resultados para isospin fractionation ratio
Resumo:
The paper describes the principal features of Omnivore, a spark-ignition-based research engine designed to investigate the possibility of true wide-range HCCI operation on a variety of fossil and renewable liquid fuels. The engine project is part-funded jointly by the United Kingdom's Department for the Environment, Food and Rural Affairs (DEFRA) and the Department of the Environment of Northern Ireland (DoENI). The engineering team includes Lotus Engineering, Jaguar Cars, Orbital Corporation and Queen's University Belfast.
Resumo:
Context. It has been established that the classical gas-phase production of interstellar methanol (CH3OH) cannot explain observed abundances. Instead it is now generally thought that the main formation path has to be by successive hydrogenation of solid CO on interstellar grain surfaces. Aims. While theoretical models and laboratory experiments show that methanol is efficiently formed from CO on cold grains, our aim is to test this scenario by astronomical observations of gas associated with young stellar objects (YSOs). Methods. We have observed the rotational transition quartets J = 2K – 1K of 12CH3OH and 13CH3OH at 96.7 and 94.4 GHz, respectively, towards a sample of massive YSOs in different stages of evolution. In addition, the J = 1-0 transitions of 12C18O and 13C18O were observed towards some of these sources. We use the 12C/13C ratio to discriminate between gas-phase and grain surface origin: If methanol is formed from CO on grains, the ratios should be similar in CH3OH and CO. If not, the ratio should be higher in CH3OH due to 13C fractionation in cold CO gas. We also estimate the abundance ratios between the nuclear spin types of methanol (E and A). If methanol is formed on grains, this ratio is likely to have been thermalized at the low physical temperature of the grain, and therefore show a relative over-abundance of A-methanol. Results. We show that the 12C/13C isotopic ratio is very similar in gas-phase CH3OH and C18O, on the spatial scale of about 40 arcsec, towards four YSOs. For two of our sources we find an overabundance of A-methanol as compared to E-methanol, corresponding to nuclear spin temperatures of 10 and 16 K. For the remaining five sources, the methanol E/A ratio is less than unity. Conclusions. While the 12C/13C ratio test is consistent with methanol formation from hydrogenation of CO on grain surfaces, the result of the E/A ratio test is inconclusive.
Resumo:
Carbon stable isotope ((13)C) fractionation in chlorofluorocarbon (CFC) compounds arising from abiotic (chemical) degradation using zero-valent iron (ZVI) and biotic (landfill gas attenuation) processes is investigated. Batch tests (at 25 °C) for CFC-113 and CFC-11 using ZVI show quantitative degradation of CFC-113 to HCFC-123a and CFC-1113 following pseudo-first-order kinetics corresponding to a half-life (t(1/2)) of 20.5 h, and a ZVI surface-area normalized rate constant (k(SA)) of -(9.8 ± 0.5) × 10(-5) L m(-2) h(-1). CFC-11 degraded to trace HCFC-21 and HCFC-31 following pseudo-first-order kinetics corresponding to t(1/2) = 17.3 h and k(SA) = -(1.2 ± 0.5) × 10(-4) L m(-2) h(-1). Significant kinetic isotope effects of e(‰) = -5.0 ± 0.3 (CFC-113) and -17.8 ± 4.8 (CFC-11) were observed. Compound-specific carbon isotope analyses also have been used here to characterize source signatures of CFC gases (HCFC-22, CFC-12, HFC-134a, HCFC-142b, CFC-114, CFC-11, CFC-113) for urban (UAA), rural/remote (RAA), and landfill (LAA) ambient air samples, as well as in situ surface flux chamber (FLUX; NO FLUX) and landfill gas (LFG) samples at the Dargan Road site, Northern Ireland. The latter values reflect biotic degradation and isotopic fractionation in LFG production, and local atmospheric impact of landfill emissions through the cover. Isotopic fractionations of ?(13)C ~ -13‰ (HCFC-22), ?(13)C ~ -35‰ (CFC-12) and ?(13)C ~ -15‰ (CFC-11) were observed for LFG in comparison to characteristic solvent source signatures, with the magnitude of the isotopic effect for CFC-11 apparently similar to the kinetic isotope effect for (abiotic) ZVI degradation.
Resumo:
We have observed the 3-2 transitions of DCN and (HCN)-N-15 in a number of hot molecular cores previously surveyed by us with the interesting result that the DCN/HCN ratio is low, a few times 10(-3), in the hot cores. The abundance ratio of DCN/HCN is derived both 'on-core' and 'off-core' and, in general is larger at the 'off-core' positions. Comparision with chemical models of these sources indicates that DCN liberated from evaporated ices can be destroyed rapidly in the hot gas by reaction with atomic hydrogen, which works to reset the the initial DCN/HCN ratio in the ice to the gas-phase atomic D/H ratio. The low DCN/HCN abundance ratio we measure can be reached in less than 10(4) years, consistent with previous estimates of the core ages, if the activation energy of the reaction is less than 500 K.
Resumo:
We have observed DC3N and HC3N in a number of cold dust clouds in order to derive the degree of deuterium fractionation. We find that the ratio of DC3N to HC3N is large, at about 0.05 or more, and discuss the implications of this result for the synthesis of cyanoacetylene. The observations are most readily interpreted if the deuteration of HC3N is linked to that of cyclic C3H2, which is also observed to exhibit a large degree of deuterium fractionation. HC3N deuteration levels comparable with those we observed are found to he just compatible with the mechanism suggested by Howe & Millar, but with adjusted rate coefficients. Freeze-out on to grain surfaces is also considered, but produces widespread deuterium enhancement in many species. contrary to observed levels.
Resumo:
Toward the starburst nucleus of NGC 253, C-12/C-13 line intensity ratios from six carbon bearing molecules (CO, CN, CS, HCN, HCO+, and HNC) are used to confine the possible range of carbon and oxygen isotope ratios. A detailed analysis yields C-12/C-13 approximately 40 and O-16/O-18 approximately 200. Also reported are first detections of (CS)-C-13 and of the 0(0) - 1(-1) E line of methanol (CH3OH) in an extragalactic source.