74 resultados para ion acceleration


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expansion of a dense plasma through a more rarefied ionized medium is a phenomenon of interest in various physics environments ranging from astrophysics to high energy density laser-matter laboratory experiments. Here this situation is modeled via a one-dimensional particle-in-cell simulation; a jump in the plasma density of a factor of 100 is introduced in the middle of an otherwise equally dense electron-proton plasma with an uniform proton and electron temperature of 10 eV and 1 keV, respectively. The diffusion of the dense plasma, through the rarefied one, triggers the onset of different nonlinear phenomena such as a strong ion-acoustic shock wave and a rarefaction wave. Secondary structures are detected, some of which are driven by a drift instability of the rarefaction wave. Efficient proton acceleration occurs ahead of the shock, bringing the maximum proton velocity up to 60 times the initial ion thermal speed. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3469762]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oblique modulational instability of dust acoustic (DA) waves in an unmagnetized warm dusty plasma with nonthermal ions, taking into account dust grain charge variation (charging), is investigated. A nonlinear Schrodinger-type equation governing the slow modulation of the wave amplitude is derived. The effects of dust temperature, dust charge variation, ion deviation from Maxwellian equilibrium (nonthermality) and constituent species' concentration on the modulational instability of DA waves are examined. It is found that these parameters modify significantly the oblique modulational instability domain in the k-theta plane. Explicit expressions for the instability rate and threshold have been obtained in terms of the dispersion laws of the system. The possibility and conditions for the existence of different types of localized excitations are also discussed. The findings of this investigation may be useful in understanding the stable electrostatic wave packet acceleration mechanisms close to the Moon, and also enhances our knowledge on the occurrence of instability associated to pickup ions around unmagnetized bodies, such as comets, Mars, and Venus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new regime is described for radiation pressure acceleration of a thin foil by an intense laser beam of above 10(20) W cm(-2). Highly monoenergetic proton beams extending to giga-electron-volt energies can be produced with very high efficiency using circularly polarized light. The proton beams have a very small divergence angle (< 4 degrees). This new method allows the construction of ultra-compact proton and ion accelerators with ultra-short particle bursts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental data from the Trident Laser facility is presented showing quasimonoenergetic carbon ions from nm-scaled foil targets with an energy spread of as low as 15% at 35 MeV. These results and high resolution kinetic simulations show laser acceleration of quasimonoenergetic ion beams by the generation of ion solitons with circularly polarized laser pulses (500 fs, ¼ 1054 nm). The conversion ef?ciency into monoenergetic ions is increased by an order of magnitude compared with previous experimental results, representing an important step towards applications such as ion fast ignition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A significant amount of experimental work has been devoted over the last decade to the development and optimization of proton acceleration based on the so-called Target Normal Sheath acceleration mechanism. Several studies have been dedicated to the determination of scaling laws for the maximum energy of the protons as a function of the parameters of the irradiating pulses, studies based on experimental results and on models of the acceleration process. We briefly summarize the state of the art in this area, and review some of the scaling studies presented in the literature. We also discuss some recent results, and projected scalings, related to a different acceleration mechanism for ions, based on the Radiation Pressure of an ultraintense laser pulse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed. (C) 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new regime to generate high-energy quasimonoenergetic proton beams in a "slow-pulse" regime, where the laser group velocity vg<c is reduced by an extended near-critical density plasma. In this regime, for properly matched laser intensity and group velocity, ions initially accelerated by the light sail (LS) mode can be further trapped and reflected by the snowplough potential generated by the laser in the near-critical density plasma. These two acceleration stages are connected by the onset of Rayleigh-Taylor-like (RT) instability. The usual ion energy spectrum broadening by RT instability is controlled and high quality proton beams can be generated. It is shown by multidimensional particle-in-cell simulation that quasimonoenergetic proton beams with energy up to hundreds of MeV can be generated at laser intensities of 1021W/cm2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeVm^-1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of the radiation pressure of an intense laser beam in the formation of proton and carbon spectra from thin foils is discussed. The data presented suggests that, in competition with the Target Normal Sheath Acceleration mechanism, the onset of the Light Sail (LS) region of Radiation Pressure Acceleration can be obtained for suitably thin targets at currently available laser intensities,. The spectral features and their scaling with the laser and target parameters are consistent with the scenario of Light Sail (LS) acceleration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources.