72 resultados para human computer interaction
Resumo:
Increasing litter size has long been a goal of pig (Sus scrofa domesticus) breeders and producers in many countries. Whilst this has economic and environmental benefits for the pig industry, there are also implications for pig welfare. Certain management interventions are used when litter size routinely exceeds the ability of individual sows to successfully rear all the piglets (ie viable piglets outnumber functional teats). Such interventions include: tooth reduction; split suckling; cross-fostering; use of nurse sow systems and early weaning, including split weaning; and use of artificial rearing systems. These practices raise welfare questions for both the piglets and sow and are described and discussed in this review. In addition, possible management approaches which might mitigate health and welfare issues associated with large litters are identified. These include early intervention to provide increased care for vulnerable neonates and improvements to farrowing accommodation to mitigate negative effects, particularly for nurse sows. An important concept is that management at all stages of the reproductive cycle, not simply in the farrowing accommodation, can impact on piglet outcomes. For example, poor stockhandling at earlier stages of the reproductive cycle can create fearful animals with increased likelihood of showing poor maternal behaviour. Benefits of good sow and litter management, including positive human-animal relationships, are discussed. Such practices apply to all production situations, not just those involving large litters. However, given that interventions for large litters involve increased handling of piglets and increased interaction with sows, there are likely to be even greater benefits for management of hyper-prolific herds. © 2013 Universities Federation for Animal Welfare.
Resumo:
The astonishing development of diverse and different hardware platforms is twofold: on one side, the challenge for the exascale performance for big data processing and management; on the other side, the mobile and embedded devices for data collection and human machine interaction. This drove to a highly hierarchical evolution of programming models. GVirtuS is the general virtualization system developed in 2009 and firstly introduced in 2010 enabling a completely transparent layer among GPUs and VMs. This paper shows the latest achievements and developments of GVirtuS, now supporting CUDA 6.5, memory management and scheduling. Thanks to the new and improved remoting capabilities, GVirtus now enables GPU sharing among physical and virtual machines based on x86 and ARM CPUs on local workstations,computing clusters and distributed cloud appliances.
Resumo:
This paper reports the initial response of atomic nitrogen doped diamond like carbon (DLC) to endothelial cells in vitro. The introduction of nitrogen atoms/molecules to the diamond like carbon structures leads to an atomic structural change favorable to the attachment of human micro-vascular enclothelial cells. Whilst the semi-conductivity induced by nitrogen in DLC is thought to play a part, the increase in the inion-bonded N atoms and N-2 molecules in the atomic doped species (with the exclusion of the charged species) seems to contribute to the improved attachment of human microvascular endothelial cells. The increased endothelial attachment is associated with a lower work function and slightly higher water contact angle in the atomic doped films, where the heavy charged particles are excluded. The films used in the study were synthesized by the RF PECVD technique followed by post deposition doping with nitrogen, and afterwards the films were characterized by XPS, Raman spectroscopy, SIMS and Kelvin probe. The water contact angles were measured, and the counts of the adherent endothelial cells on the samples were carried out. This study is relevant and contributory to improving biocompatibility of surgical implants and prostheses.
Resumo:
IQGAPs are cytoskeletal scaffolding proteins which collect information from a variety of signalling pathways and pass it on to the microfilaments and microtubules. There is a well-characterised interaction between IQGAP and calmodulin through a series of IQ-motifs towards the middle of the primary sequence. However, it has been shown previously that the calponin homology domain (CHD), located at the N-terminus of the protein, can also interact weakly with calmodulin. Using a recombinant fragment of human IQGAP1 which encompasses the CHD, we have demonstrated that the CHD undergoes a calcium ion-dependent interaction with calmodulin. The CHD can also displace the hydrophobic fluorescent probe 1-anilinonaphthalene-8-sulphonate from calcium-calmodulin, suggesting that the interaction involves non-polar residues on the surface of calmodulin. Molecular modelling identified a possible site on the CHD for calmodulin interaction. The physiological significance of this interaction remains to be discovered.
Resumo:
This work presents a novel approach for human action recognition based on the combination of computer vision techniques and common-sense knowledge and reasoning capabilities. The emphasis of this work is on how common sense has to be leveraged to a vision-based human action recognition so that nonsensical errors can be amended at the understanding stage. The proposed framework is to be deployed in a realistic environment in which humans behave rationally, that is, motivated by an aim or a reason. © 2012 Springer-Verlag.
Resumo:
Although respiratory syncytial virus (RSV) is a major human respiratory pathogen, our knowledge of how it causes disease in humans is limited. Airway epithelial cells are the primary targets of RSV infection in vivo, so the generation and exploitation of RSV infection models based on morphologically and physiologically authentic well-differentiated primary human airway epithelial cells cultured at an air-liquid interface (WD-PAECs) provide timely developments that will help to bridge this gap. Here we review the interaction of RSV with WD-PAEC cultures, the authenticity of the RSV-WD-PAEC models relative to RSV infection of human airway epithelium in vivo, and future directions for their exploitation in our quest to understand RSV pathogenesis in humans.
Resumo:
Very-low-density lipoproteins (VLDL) (density less than 1.006 g/mL) were isolated from type I (insulin-dependent) diabetic patients in good to fair glycemic control and from age-, sex-, and race-matched, nondiabetic, control subjects. VLDL were incubated with human, monocyte-derived macrophages obtained from nondiabetic donors, and the rates of cellular cholesteryl ester synthesis and cholesterol accumulation were determined. VLDL isolated from diabetic patients stimulated significantly more cholesteryl ester synthesis than did VLDL isolated from control subjects (4.04 +/- 1.01 v 1.99 +/- 0.39 nmol 14C-cholesteryl oleate synthesized/mg cell protein/20 h; mean +/- SEM, P less than .05). The stimulation of cholesteryl ester synthesis in macrophages incubated with VLDL isolated from diabetic patients was paralleled by a significant increase in intracellular cholesteryl ester accumulation (P less than .05). The increase in cholesteryl ester synthesis and accumulation in macrophages were mediated by a significant increase in the receptor mediated, high affinity degradation (2.55 +/- 0.23 v 2.12 +/- 0.20 micrograms degraded/mg cell protein/20 h) and accumulation (283 +/- 35 v 242 +/- 33 ng/mg cell protein/20 h) of 125I-VLDL isolated from diabetic patients compared with VLDL from control subjects. To determine if changes in VLDL apoprotein composition were responsible for the observed changes in cellular rates of cholesteryl ester synthesis and accumulation, we also examined the apoprotein composition of the VLDL from both groups. There were no significant differences between the apoproteins B, E, and C content of VLDL from both groups. We also determined the chemical composition of VLDL isolated from both groups of subjects.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The mapping problem is inherent to digital musical instruments (DMIs), which require, at the very least, an association between physical gestures and digital synthesis algorithms to transform human bodily performance into sound. This article considers the DMI mapping problem in the context of the creation and performance of a heterogeneous computer chamber music piece, a trio for violin, biosensors, and computer. Our discussion situates the DMI mapping problem within the broader set of interdependent musical interaction issues that surfaced during the composition and rehearsal of the trio. Through descriptions of the development of the piece, development of the hardware and software interfaces, lessons learned through rehearsal, and self-reporting by the participants, the rich musical possibilities and technical challenges of the integration of digital musical instruments into computer chamber music are demonstrated.