63 resultados para high ion conductivity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The propagation of acoustic nonlinear excitations in an electron-positron-ion (e-p-i) plasma composed of warm electrons and positrons, as well as hot ions, has been investigated by adopting a two-dimensional cylindrical geometry. The electrons and positrons are modeled by hydrodynamic fluid equations, while the ions are assumed to follow a temperature-parametrized Boltzmann distribution (the fixed ion model is recovered in the appropriate limit). This situation applies in the accretion disk near a black hole in active galactic nuclei, where the ion temperature may be as high as 3 to 300 times that of the electrons. Using a reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation is derived and its exact soliton solutions are presented. Furthermore, real situations in which the strength of the nonlinearity may be weak are considered, so that higher-order nonlinearity plays an important role. Accordingly, an extended cylindrical Kadomtsev-Petviashvili equation is derived, which admits both soliton and double-layer solutions. The characteristics of the nonlinear excitations obtained are investigated in detail

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focused ion beam microscope (FIB) has been used to fabricate thin parallel-sided ferroelectric capacitors from single crystals of BaTiO3 and SrTiO3. A series of nano-sized capacitors ranging in thickness from similar to660 nm to similar to300 nm were made. Cross-sectional high resolution transmission electron microscopy (HRTEM) revealed that during capacitor fabrication, the FIB rendered around 20 nm of dielectric at the electrode-dielectric interface amorphous, associated with local gallium impregnation. Such a region would act electrically in series with the single crystal and would presumably have a considerable negative influence on the dielectric properties. However, thermal annealing prior to gold electrodes deposition was found to fully recover the single crystal capacitors and homogenise the gallium profile. The dielectric testing of the STO ultra-thin single crystal capacitors was performed yielding a room temperature dielectric constant of similar to300, as is the case in bulk. Therefore, there was no evidence of a collapse in dielectric constant associated with thin film dimensions.