98 resultados para hematopoietic stem cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Ca2+ ion is an important intracellular messenger essential for the regulation of various cellular functions including proliferation, differentiation and apoptosis. Transient Receptor Potential (TRP) channels are calcium permeable cationic channels that play important role in regulation of free intracellular calcium ([Ca2+]i) in response to thermal, physical and chemical stimuli. Ca2+ signalling in human dental pulp stem cells (hDPSCs) and the ion channels regulating Ca2+ are largely not known. Objectives: Investigate changes in [Ca2+]i and determine the ion channels that regulate calcium signalling in hDPSCs. Methods: DPSCs were derived from immature third molars and cells less than passage 6 were used in all the experiments. Changes in [Ca2+]i were studied with Fura2 calcium imaging. RNA was extracted from DPSCs and a panel of TRP channel gene expression was determined by qPCR employing custom designed FAM TRP specific primers and probes (Roche, UK) and the Light Cycler 480 Probes Master (Roche). Results: hDPSCs express gene transcripts for all TRP families including TRPV1, V2, V4, TRPA1, TRPC3, TRPC5, TRPC6, TRPM3, TRPM7 and TRPP2. Stimulation of cells with appropriate TRP channel agonist induced increase in [Ca2+]i and similar responses were obtained when cell were mechanically stimulated by membrane stretch with application of hypotonic solution. Conclusion: TRP channels mediate calcium signalling in hDPSCs that merit further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stromal cells (MSC) have been reported to improve bacterial clearance in pre-clinical models of Acute Respiratory Distress Syndrome (ARDS) and sepsis. The mechanism of this effect is not fully elucidated yet. The primary objective of this study was to investigate the hypothesis that the anti-microbial effect of MSC in vivo depends on their modulation of macrophage phagocytic activity which occurs through mitochondrial transfer. We established that selective depletion of alveolar macrophages (AM) with intranasal (IN) administration of liposomal clodronate resulted in complete abrogation of MSC anti-microbial effect in the in vivo model of E.coli pneumonia. Furthermore, we showed that MSC administration was associated with enhanced AM phagocytosis in vivo. We showed that direct co-culture of MSC with monocyte-derived macrophages (MDMs) enhanced their phagocytic capacity. By fluorescent imaging and flow cytometry we demonstrated extensive mitochondrial transfer from MSC to macrophages which occurred at least partially through TNT-like structures. We also detected that lung macrophages readily acquire MSC mitochondria in vivo, and macrophages which are positive for MSC mitochondria display more pronounced phagocytic activity. Finally, partial inhibition of mitochondrial transfer through blockage of TNT formation by MSC resulted in failure to improve macrophage bioenergetics and complete abrogation of the MSC effect on macrophage phagocytosis in vitro and the anti-microbial effect of MSC in vivo.

Collectively, this work for the first time demonstrates that mitochondrial transfer from MSC to innate immune cells leads to enhancement in phagocytic activity and reveals an important novel mechanism for the anti-microbial effect of MSC in ARDS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FKBPL and its peptide derivative, AD-01, have already demonstrated well-established inhibitory effects on breast cancer growth and CD44 dependent anti-angiogenic activity1, 2, 3. Since breast cancer stem cells (BCSCs) are CD44 positive, we wanted to explore if AD-01 could specifically target BCSCs. FKBPL stable overexpression or AD-01 treatment were highly effective at reducing the BCSC population measured by inhibiting mammosphere forming efficiency (MFE) in cell lines and primary breast cancer samples from both solid breast tumours and pleural effusions. Flow cytometry, to assess the ESA+/CD44+/CD24- subpopulation, validated these results. The ability of AD-01 to inhibit the self-renewal capacity of BCSCs was confirmed across three generations of mammospheres, where mammospheres were completely eradicated by the third generation (p<0.001). Clonogenic assays suggested that AD-01 mediated BCSC differentiation, with a significant decrease in the number of holoclones and an associated increase in meroclones/paraclones. In support of this, the stem cell markers, Nanog and Oct4 were significantly reduced following AD-01 treatment, whilst transfection of FKBPL-targeted siRNAs led to an increase in these markers and in mammosphere forming potential, highlighting the endogenous role of FKBPL in stem cell signalling. The clinical relevance of this was confirmed using a publically available microarray data set (GSE7390), where, high FKBPL and low Nanog expression were independently associated with improved overall survival in breast cancer patients (log rank test p=0.03; hazard ratio=3.01). When AD-01 was combined with other agents, we observed synergistic activity with the Notch inhibitor, DAPT and AD-01 was also able to abrogate a chemo- and radiotherapy induced enrichment in BCSCs. Importantly, using ‘gold standard’ in vivo limiting dilution assays we demonstrated a delay in tumour initiation and reoccurrence in AD-01 treated xenografts. In summary, AD-01 appears to have dual anti-angiogenic and anti-BCSC activity which will be advantageous as this agent enters clinical trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FKBPL and its peptide derivatives have already demonstrated well-established inhibitory effects on cancer growth and CD44-dependent anti-angiogenic activity. Since cancer stem cells (CSCs) are CD44 positive, we wanted to explore if these therapeutics could specifically target CSCs in breast and ovarian cancer. In a tumoursphere assay, FKBPL stable overexpression or FKBPL-based peptide (AD-01, preclinical peptide or ALM201, clinical peptide candidate) treatment were highly effective at reducing the CSC population measured by inhibiting tumoursphere forming efficiency in breast and ovarian cancer cell lines and primary breast cancer samples from both solid breast tumours and pleural effusions. Flow cytometry, to assess the ESA+/CD44+/CD24- and ALDH+ cell subpopulations representative of CSCs, validated these results. The ability of AD-01 and ALM201 to inhibit the self-renewal capacity of CSCs was confirmed across three generations, eradicating CSC completely by the third generation (p<0.001). Furthermore, clonogenic assay demonstrated that FKBPL-based peptides mediated CSC differentiation, with a significant decrease in the number of CSCs or holoclones and an associated increase in differentiated cancer cells or meroclones/paraclones. In addition, AD-01 treatment in vitro and in vivo led to a significant reduction in the stem cell markers, Nanog, Sox2 and Oct4 protein and mRNA levels; whilst transfection of FKBPL-targeted siRNAs led to an increase in these markers and in tumoursphere forming potential, highlighting the endogenous role of FKBPL in stem cell signalling. The clinical relevance of this was confirmed using a publically available microarray data set (GSE7390), where, high FKBPL and low Nanog expression were independently associated with improved overall survival in breast cancer patients (log rank test p=0.03; hazard ratio=3.01). Additionally, when AD-01 was combined with other agents, we observed additive activity with the Notch inhibitor, DAPT and AD-01 was also able to abrogate a chemo- and radiotherapy induced enrichment in CSCs. Importantly, using gold standard in vivo limiting dilution assays we demonstrated a delay in tumour initiation and reoccurrence in AD-01 treated xenografts. In summary, FKBPL-based peptides appear to have dual anti-angiogenic and anti-CSC activity which will be advantageous as this agent enters clinical trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method was devised to grow haemopoietic cells in long-term bone marrow culture (LTBMC) which requires only 1 x 10(6) cells/culture. Such miniature cultures were used to study growth patterns of marrow from patients with myelodysplastic syndromes (MDS). Consistent differences in LTBMC cellularity and cellular composition were noted between MDS and normal marrow. These differences were accentuated by rGM-CSF. The criteria which distinguished between and MDS marrows were: cell count at weeks 1 and 4, % neutrophils and % blasts. In 10 patients with unexplained macrocytosis or pancytopenia miniature LTBMC results clearly segregated into either 'normal' or 'MDS' growth patterns. Miniature LTBMC with rGM-CSF may therefore be a useful diagnostic test for early MDS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was conducted to determine the perivascular cell responses to increased endothelial cell expression of insulin-like growth factor binding protein-3 (IGFBP-3) in mouse retina. The contribution of bone marrow cells in the IGFBP-3-mediated response was examined using green fluorescent protein-positive (GFP(+)) adult chimeric mice subjected to laser-induced retinal vessel occlusion injury. Intravitreal injection of an endothelial-specific IGFBP-3-expressing plasmid resulted in increased differentiation of GF(P)+ hematopoietic stem cells (HSCs) into pericytes and astrocytes as determined by immunohistochemical analysis. Administration of IGFBP-3 plasmid to mouse pups that underwent the oxygen-induced retinopathy model resulted in increased pericyte ensheathment and reduced pericyte apoptosis in the developing retina. Increased IGFBP-3 expression reduced the number of activated microglial cells and decreased apoptosis of neuronal cells in the oxygen-induced retinopathy model. In summary, IGFBP-3 increased differentiation of GFP(+) HSCs into pericytes and astrocytes while increasing vascular ensheathment of pericytes and decreasing apoptosis of pericytes and retinal neurons. All of these cytoprotective effects exhibited by IGFBP-3 overexpression can result in a more stable retinal vascular bed. Thus, endothelial expression of IGFBP-3 may represent a physiologic response to injury and may represent a therapeutic strategy for the treatment of ischemic vascular eye diseases, such as diabetic retinopathy and retinopathy of prematurity. (Am J Pathol 2011, 178:1517-1524; DOI: 10.1016/j.ajpath.2010.12.031)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of granulocyte-macrophage progenitor cells (in vitro colony-forming cells) and of colony-stimulating (CS) factor in serum were studied in mice infected intraperitoneally with 10(3) viable Salmonella typhimurium. Increases in the number of colony-forming cells in marrow and spleen and increases in the serum level of CS factor occurred during the infection. There was no evidence to suggest that progressive infection was associated with failure of macrophage production. Medium rich in CS factor increased the bactericidal activity of macrophages in vitro and it was suggested that CS factor could be involved in macrophage activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-DNA targeted effects of ionising radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understandfng of the likely mechanisms associated with non-DNA targeted effects, particularly with respect to systemic (human health) consequences at low and intermediate doses of ionising radiation. Other outstanding questions include links between the different non-targeted responses and the variations. in response observed between individuals and cell lines, possibly a function of genetic background. Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the non-targeted effects of ionising radiation (NOTE) Integrated Project funded by the European Union. Here we critically examine the evidence for non-targeted effects, discuss apparently contradictory results and consider implications for low-dose radiation health effects. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously reported a randomized trial comparing Cyclosporin-A (CsA) and short-term methotrexate versus CsA alone for graft-versus-host disease (GvHD) prophylaxis in 71 patients undergoing allogeneic haematopoietic stem cell transplantation (HSCT) from a human leucocyte antigen-identical sibling for severe aplastic anaemia (SAA). We found a better survival in the group receiving the two-drug prophylaxis regimen with no significant difference in the probability of developing GvHD between the two groups. The present study details chimaeric analysis and its influence on survival and GvHD occurrence in 45 of the original 71 patients in whom serial samples were available. Analysis was carried out in a blinded prospective manner. Seventy-two per cent achieved complete donor chimaerism (DC), 11% stable mixed chimaerism (SMC) and 17% progressive mixed chimaerism (PMC). The overall 5-year survival probability was 82% (+/-11%) with a significant survival advantage (P = 0.0009) in DC or SMC compared to those with PMC. Chronic GvHD was more frequent in DC patients, whereas no patient with SMC developed chronic GvHD. Graft failure occurred in 50% of the PMC group. This study demonstrates the relevance of chimaerism analysis in patients receiving HSCT for SAA and confirms the occurrence of mixed chimaerism in a significant proportion of recipients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal models of bone marrow transplantation (BMT) allow evaluation of new experimental treatment strategies. One potential strategy involves the treatment of donor marrow with ultra-violet B light to allow transplantation across histocompatibility boundaries without an increase in graft rejection or graft-versus-host disease. A major requirement for a new experimental protocol, particularly if it involves manipulation of the donor marrow, is that the manipulated marrow gives rise to long-term multilineage engraftment. DNA based methodologies are now routinely used by many centres to evaluate engraftment and degree of chimaerism post-BMT in humans. We report the adaptation of this methodology to the serial study of engraftment in rodents. Conditions have been defined which allow analysis of serial tail vein samples using PCR of short tandem repeat sequences (STR-PCR). These markers have been used to evaluate the contribution of ultraviolet B treated marrow to engraftment following BMT in rodents without compromising the health of the animals under study. Chimaerism data from sequential tail vein samples and bone marrow from selected sacrificed animals showed excellent correlation, thus confirming the validity of this approach in analysing haemopoietic tissue. Thus the use of this assay may facilitate experimental studies in animal BMT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Residual recipient haematopoietic cells may coexist with donor haemopoietic tissue following BMT. This is known as mixed chimaerism. The incidence of mixed chimaerism varies with the sensitivity of the detection system used; DNA based methodologies are the most sensitive. The influence of mixed chimaerism on leukaemia relapse and graft rejection is unclear. The lineages in which mixed chimaerism occurs may affect outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of mixed hematopoietic chimerism (MC) after allogeneic bone marrow transplantation remains unknown. Increasingly sensitive detection methods have shown that MC occurs frequently. We report a highly sensitive novel method to assess MC based on the polymerase chain reaction (PCR). Simple dinucleotide repeat sequences called microsatellites have been found to vary in their repeat number between individuals. We use this variation to type donor-recipient pairs following allogeneic BMT. A panel of seven microsatellites was used to distinguish between donor and recipient cells of 32 transplants. Informative microsatellites were subsequently used to assess MC after BMT in this group of patients. Seventeen of the 32 transplants involved a donor of opposite sex; hence, cytogenetics and Y chromosome-specific PCR were also used as an index of chimerism in these patients. MC was detected in bone marrow aspirates and peripheral blood in 18 of 32 patients (56%) by PCR. In several cases, only stored slide material was available for analysis but PCR of microsatellites or Y chromosomal material could be used successfully to assess the origin of cells in this archival material. Cytogenetic analysis was possible in 17 patients and MC was detected in three patients. Twelve patients received T-cell-depleted marrow and showed a high incidence of MC as revealed by PCR (greater than 80%). Twenty patients received unmanipulated marrow, and while the incidence of MC was lower (44%), this was a high percentage when compared with other studies. Once MC was detected, the percentages of recipient cells tended to increase. However, in patients exhibiting MC who subsequently relapsed, this increase was relatively sudden. The overall level of recipient cells in the group of MC patients who subsequently relapsed was higher than in those who exhibited stable MC. Thus, while the occurrence of MC was not indicative of a poor prognosis per se, sudden increases in the proportions of recipient cells may be a prelude to graft rejection or relapse.