69 resultados para heavy ion collisions
Resumo:
MALDI (matrix-assisted laser desorption/ionization) is one of the most important techniques used to produce large biomolecular ions in the gas phase. Surprisingly, the exact ionization mechanism is still not well understood and absolute values for the ion yields are scarce. This is in part due to the unknown efficiencies of typical detectors, especially for heavy biomolecular ions. As an alternative, charged particles can be non-destructively detected using an image-charge detector where the output voltage signal is proportional to the total charge within the device. In this paper, we report an absolute calibration which provides the voltage output per detected electronic charge in our experimental arrangement. A minimum of 3 x 10(3) ions were required to distinguish the signal above background noise in a single pass through the device, which could be further reduced using filtering techniques. The calibration results have been applied to raw MALDI spectra to measure absolute ion yields of both matrix and analyte ions.
Resumo:
A new ion radiation-pressure acceleration regime, the "leaky light sail," is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10(19) W/cm(2). 100 MeV proton beams are obtained by increasing the intensities to 2 x 10(20) W/cm(2).
Resumo:
Absolute doubly differential cross sections have been measured as a function of electron energy and angle of observation for electron emission in collisions of 3.5-MeV/u Fe17+ and Fe22+ ions with He and Ar gas targets under single-collision conditions. The measured electron emission cross sections are compared to theoretical and scaled cross sections based on the Born approximation. The results using intermediate-mass ions are discussed with reference to previously reported cross sections from collisions with highly charged lighter- and heavier-ion species at MeV/u projectile energies. The continuum-distorted-wave-eikonal-initial-state approximation shows good agreement with experiments except in the
Resumo:
Resonant transfer and excitation (RTE) is investigated for Fe(q+) ions (q=23, 24, and 25) colliding with H2. For each charge state, cross sections for RTE were obtained from measurements of K x rays, emitted from the doubly excited intermediate state, coincident with single-electron capture by the incident ion. Additionally, for Fe25+ cross sections were obtained from measurements of coincidences between the two K x rays emitted from the intermediate state. These latter measurements Provide information on the lifetimes of intermediate metastable states formed in the RTE process. In all cases, measured cross sections are in good agreement with calculations based on theoretical cross sections for dielectronic recombination (DR). Since RTE closely approximates DR, the results indicate that dielectronic-recombination cross sections involving K-shell excitation can be accurately predicted for highly charged iron ions. The results for Fe25+ show that metastable states are sufficiently short lived to be observable in the RTE (or DR) process for these hydrogenlike ions.
Resumo:
The second derivative of a Langmuir probe characteristic is used to establish the electron energy distribution function (EEDF) in both a tandem and hybrid multicusp H- ion source. Moveable probes are used to establish the spatial variation of the EEDF. The negative ion density is measured by laser induced photo-detachment. In the case of the hybrid source the EEDF consists of a cold Maxwellian in the central region of the source; the electron temperature increases with increasing discharge current (rising from 0.3 eV at 1 A to 1.2 eV at 50 A when the pressure is 0.4 Pa). A hot-electron tail exists in the EEDF of the driver region adjacent to each filament which is shown to consist of a distinct group of primary electrons at low pressure (0.08 Pa) but becomes degraded mainly through inelastic collisions at higher pressures (0.27 Pa). The tandem source, on the other hand, has a single driver region which extends throughout the central region. The primary electron confinement times are much longer so that even at the lowest pressure considered (0.07 Pa) the primaries are degraded. In both cases the measured EEDF at specific locations and values of discharge operating parameters are used to establish the rate coefficients for the processes of importance in H- production and destruction.
Resumo:
Ultracold hybrid ion–atom traps offer the possibility of microscopic manipulation of quantum coherences in the gas using the ion as a probe. However, inelastic processes, particularly charge transfer can be a significant process of ion loss and has been measured experimentally for the ${\rm Y}{{{\rm b}}^{+}}$ ion immersed in a Rb vapour. We use first-principles quantum chemistry codes to obtain the potential energy curves and dipole moments for the lowest-lying energy states of this complex. Calculations for the radiative decay processes cross sections and rate coefficients are presented for the total decay processes; ${\rm Y}{{{\rm b}}^{+}}(6{\rm s}{{\;}^{2}}{\rm S})+{\rm Rb}(5{\rm s}{{\;}^{2}}{\rm S})\to {\rm Yb}(6{{{\rm s}}^{2}}{{\;}^{1}}{\rm S})+{\rm R}{{{\rm b}}^{+}}(4{{{\rm p}}^{6}}{{\;}^{1}}{\rm S})+h\nu $ and ${\rm Y}{{{\rm b}}^{+}}(6{\rm s}{{\;}^{2}}{\rm S})+{\rm Rb}(5{\rm s}{{\;}^{2}}{\rm S})\to {\rm YbR}{{{\rm b}}^{+}}({{X}^{1}}{{\Sigma }^{+}})+h\nu $. Comparing the semi-classical Langevin approximation with the quantum approach, we find it provides a very good estimate of the background at higher energies. The results demonstrate that radiative decay mechanisms are important over the energy and temperature region considered. In fact, the Langevin process of ion–atom collisions dominates cold ion–atom collisions. For spin-dependent processes [1] the anisotropic magnetic dipole–dipole interaction and the second-order spin–orbit coupling can play important roles, inducing coupling between the spin and the orbital motion. They measured the spin-relaxing collision rate to be approximately five orders of magnitude higher than the charge-exchange collision rate [1]. Regarding the measured radiative charge transfer collision rate, we find that our calculation is in very good agreement with experiment and with previous calculations. Nonetheless, we find no broad resonances features that might underly a strong isotope effect. In conclusion, we find, in agreement with previous theory that the isotope anomaly observed in experiment remains an open question.
Resumo:
We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, > 10 20 W/cm 2 laser pulse by cryogenically freezing heavy water (D<inf>2</inf>O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°-8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.