87 resultados para foliar boron concentration
Resumo:
DGT (diffusive gradients in thin-films) has been proposed as a tool for predicting Cd concentrations in rice grain, but there is a lack of authenticating data. To further explore the relationship between DGT measured Cd and concentrations in rice cultivated in challenging, metal degraded, field locations with different heavy metal pollutant sources, 77 paired soil and grain samples were collected in Southern China from industrial zones, a "cancer village" impacted by mining waste and an organic farm. In situ deployments of DGT in flooded paddy rice rhizospheres were compared with a laboratory DGT assay on dried and rewetted soil. Total soil concentrations were a very poor predictor of plant uptake. Laboratory and field deployed DGT assays and porewater measurements were linearly related to grain concentrations in all but the most contaminated samples where plant toxicity occurred. The laboratory DGT assay was the best predictor of grain Cd concentrations, accommodating differences in soil Cd, pollutant source, and Cd:Zn ratios. Field DGT measurements showed that Zn availability in the flooded rice rhizospheres was greatly diminished compared to that of Cd, resulting in very high Cd:Zn ratios (0.1) compared to commonly observed values (0.005). These results demonstrate the potential of the DGT technique to predict Cd concentrations in field cultivated rice and demonstrate its robustness in a range of environments. Although, field deployments provided important details about in situ element stoichiometry, due to the inherent heterogeneity of the rice rhizosphere soils, deployment of DGT in dried and homogenized soils offers the best possibility of a soil screening tool.
Resumo:
P>In order to gain insights into the transport and distribution of arsenic (As) in intact rice (Oryza sativa) plants and its unloading into the rice grain, we investigated the spatial distribution of As and the temporal variation of As concentration in whole rice plants at different growth stages. To the best of our knowledge, this is the first time that such a study has been performed.
Inductively coupled plasma mass spectroscopy (ICP-MS) and high-performance liquid chromatography (HPLC)-ICP-MS were used to analyze total As concentration and speciation. Moreover, synchrotron-based X-ray fluorescence (SXRF) was used to investigate in situ As distribution in the leaf, internode, node and grain.
Total As concentrations of vegetative tissues increased during the 2 wk after flowering. The concentration of dimethylarsinic acid (DMA) in the caryopsis decreased progressively with its development, whereas inorganic As concentration remained stable. The ratios of As content between neighboring leaves or between neighboring internodes were c. 0.6. SXRF revealed As accumulation in the center of the caryopsis during its early development and then in the ovular vascular trace.
These results indicate that there are different controls on the unloading of inorganic As and DMA; the latter accumulated mainly in the caryopsis before flowering, whereas inorganic As was mainly transported into the caryopsis during grain filling. Moreover, nodes appeared to serve as a check-point in As distribution in rice shoots.
Resumo:
AimsThe main aim of this study was to determine the virucidal inactivation efficacy of an in-house-designed atmospheric pressure, nonthermal plasma jet operated at varying helium/oxygen feed gas concentrations against MS2 bacteriophage, widely employed as a convenient surrogate for human norovirus.
Methods and ResultsThe effect of variation of percentage oxygen concentration in the helium (He) carrier gas was studied and found to positively correlate with MS2 inactivation rate, indicating a role for reactive oxygen species (ROS) in viral inactivation. The inactivation rate constant increased with increasing oxygen concentrations up to 075% O-2. 3 log(10) (999%) reductions in MS2 viability were achieved after 3min of exposure to the plasma source operated in a helium/oxygen (9925%:075%) gas mixture, with >7 log(10) reduction after 9min exposure.
ConclusionsAtmospheric pressure, nonthermal plasmas may have utility in the rapid disinfection of virally contaminated surfaces for infection control applications.
Significance and Impact of StudyThe atmospheric pressure, nonthermal plasma jet employed in this study exhibits rapid virucidal activity against a norovirus surrogate virus, the MS2 bacteriophage, which is superior to previously published inactivation rates for chemical disinfectants.
Resumo:
The oxygen reduction reaction (ORR) activity of Pt/C catalysts was investigated in electrolytes of 0.5 mol/L H2SO4 containing varying concentrations of methanol in a half-cell. It was found that the ORR activity was improved notably in an electrolyte of 0.5 mol/L H2SO4 containing 0.1 mol/L CH3OH as compared with that in 0.5 mol/L H2SO4, 0.5 mol/L H2SO4 containing 0.5 mol/L CH3OH, or 0.5 mol/L H2SO4 containing 1.0 mol/L CH3OH electrolytes. The same tendency for improved ORR activity was also apparent after commercial Nafion (R) NRE-212 membrane was hot-pressed onto the catalyst layers. The linear sweep voltammetry results indicate that the ORR activities of the Pt/C catalyst were almost identical in the 0.5 mol/L H2SO4 + 0.1 mol/L CH3OH solution before and after coated with the Nafion (R) membrane. Electrochemical impedance spectroscopy results demonstrated that the resistance of the Nafion (R) membrane is smaller in the electrolyte of 0.5 mol/L H2SO4 + 0.1 mol/L CH3OH than in other electrolytes with oxygen gas feed. This exceptional property of the Nafion (R) membrane is worth investigating and can be applied in fuel cell stacks to improve the system performance. (c) 2013, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Resumo:
Boron-modified Pd catalysts have shown excellent performance for the selective hydrogenation of alkynes experimentally. In the current work, we investigated the hydrogenation of acetylene on boron-modified Pd(111) and Pd(211) surfaces, utilizing density functional theory calculations. The activity of acetylene hydrogenation has been studied by estimating the effective barrier of the whole process. The selectivity of ethylene formation is investigated from a comparison between the desorption and the hydrogenation of ethylene as well as comparison between the ethylene and the 1,3-butadiene formation. Formation of subsurface carbon and hydrogen on both boron-modified Pd(111) and Pd(211) surfaces has also been evaluated, since these have been reported to affect both the activity and the selectivity of acetylene hydrogenation to produce ethylene on Pd surfaces. Our results provide some important insights into the Pd B catalysts for selective hydrogenation of acetylene and also for more complex hydrogenation systems, such as stereoselective hydrogenation of longer chain alkynes and selective hydrogenation of vegetable oil.
Resumo:
Arsenic (As) contamination of rice plants can result in high total As concentrations (t-As) in cooked rice, especially if As-contaminated water is used for cooking. This study examines two variables: (1) the cooking method (water volume and inclusion of a washing step); and (2) the rice type (atab and boiled). Cooking water and raw atab and boiled rice contained 40 g As l-1 and 185 and 315 g As kg-1, respectively. In general, all cooking methods increased t-As from the levels in raw rice; however, raw boiled rice decreased its t-As by 12.7% when cooked by the traditional method, but increased by 15.9% or 23.5% when cooked by the intermediate or contemporary methods, respectively. Based on the best possible scenario (the traditional cooking method leading to the lowest level of contamination, and the atab rice type with the lowest As content), t-As daily intake was estimated to be 328 g, which was twice the tolerable daily intake of 150 g.
Resumo:
Pollution of subterranean water by arsenic (As) in Asia has resulted in the worst chemical disaster in human history. For populations living on subsistence rice diets, As contamination of rice grain contributes greatly to dietary As exposure. The main objectives of this study were to compare two dehusking processes: (a) wet process (soaking of rice, boiling and mechanical hulling) and (b) dry process (mechanical hulling), and recommend the method leading to a lower As content in commercial rice. In general, hulling of paddy rice (373 mu g As kg(-1)) significantly decreased As content in rice grain (311 mu g As kg(-1)). The final As concentrations in boiled rice (final product of the wet process) and atab rice (dry process) were 332 and 290 mu g kg(-1). Thus, the dry method is recommended for dehusking paddy rice if not As-free water is available. However, villagers can reduce the As content in the wet system by discarding the soaking water and using new water for the light boiling. Finally, it is not recommended to use rice husk for feeding animals because the As concentration is very high, approximately 1,000 mu g As kg(-1).
Resumo:
Boron-doped titanium dioxide (B-TiO) films were deposited by atmospheric pressure chemical vapour deposition of titanium(iv) chloride, ethyl acetate and tri-isopropyl borate on steel and fluorine-doped-tin oxide substrates at 500, 550 and 600 °C, respectively. The films were characterised using powder X-ray diffraction (PXRD), which showed anatase phase TiO at lower deposition temperatures (500 and 550 °C) and rutile at higher deposition temperatures (600 °C). X-ray photoelectron spectroscopy (XPS) showed a dopant level of 0.9 at% B in an O-substitutional position. The ability of the films to reduce water was tested in a sacrificial system using 365 nm UV light with an irradiance of 2 mW cm. Hydrogen production rates of B-TiO at 24 μL cm h far exceeded undoped TiO at 2.6 μL cm h. The B-TiO samples were also shown to be active for water oxidation in a sacrificial solution. Photocurrent density tests also revealed that B-doped samples performed better, with an earlier onset of photocurrent. © 2013 The Owner Societies.
Resumo:
Some retrieved CoCrMo hip implants have shown that abrasive wear is one of the possible wear mechanisms invoked within such joints. To date, little work has focused on the third body abrasion of CoCrMo and therefore there is a general lack of understanding of the effect of abrasive size and volume concentration on the tribo-corrosion performance of the CoCrMo alloys. The present work assessed the tribo-corrosion behaviour of cast CoCrMo (F-75) under various abrasion-corrosion conditions by using a modified microabrasion tester incorporating a three-electrode electrochemical cell. The effects of reduced abrasive size/hardness and volume concentration, as well as the role of proteins on the tribo-corrosion performance of the cast CoCrMo alloy were addressed. The correlation between electrochemical and mechanical processes for different abrasion-corrosion test conditions has been discussed in detail. Results show that the reduction in abrasive size and volume concentration can significantly affect the abrasion-corrosion wear mechanisms and the wear-induced corrosion response of the material. The finding of this study implies that the smaller/softer third body particles generated in vivo could also result in significant wear-induced corrosion and therefore potential metal ion release, which could be potentially detrimental to both the patient health and the life span of the implants. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background
High density lipoproteins (HDL) have many cardioprotective roles; however, in subjects with type 2 diabetes (T2D) these cardioprotective properties are diminished. Conversely, increased fruit and vegetable (F&V) intake may reduce cardiovascular disease risk, although direct trial evidence of a mechanism by which this occurs in subjects with T2D is lacking. Therefore, the aim of this study was to examine if increased F&V consumption influenced the carotenoid content and enzymes associated with the antioxidant properties of HDL in subjects with T2D.
MethodsEighty obese subjects with T2D were randomised to a 1- or ≥6-portion/day F&V diet for 8-weeks. Fasting serum was collected pre- and post-intervention. HDL was subfractionated into HDL2 and HDL3 by rapid ultracentrifugation. Carotenoids were measured in serum, HDL2 and HDL3 by high performance liquid chromatography. The activity of paraoxonase-1 (PON-1) was measured in serum, HDL2 and HDL3 by a spectrophotometric assay, while the activity of lecithin cholesterol acyltransferase (LCAT) was measured in serum, HDL2 and HDL3 by a fluorometric assay.
ResultsIn the ≥6- vs. 1-portion post-intervention comparisons, carotenoids increased in serum, HDL2 and particularly HDL3, (α-carotene, p = 0.008; β-cryptoxanthin, p = 0.042; lutein, p = 0.012; lycopene, p = 0.016), as did the activities of PON-1 and LCAT in HDL3 (p = 0.006 and 0.044, respectively).
ConclusionTo our knowledge, this is the first study in subjects with T2D to demonstrate that increased F&V intake augmented the carotenoid content and influenced enzymes associated with the antioxidant properties of HDL. We suggest that these changes would enhance the cardioprotective properties of this lipoprotein.
Resumo:
A simple derivatization methodology is shown to extend the application of surface-enhanced Raman spectroscopy (SERS) to the detection of trace concentration of contaminants in liquid form. Normally in SERS the target analyte species is already present in the molecular form in which it is to be detected and is extracted from solution to occupy sites of enhanced electromagnetic field on the substrate by means of chemisorption or drop-casting and subsequent evaporation of the solvent. However, these methods are very ineffective for the detection of low concentrations of contaminant in liquid form because the target (ionic) species (a) exhibits extremely low occupancy of enhancing surface sites in the bulk liquid environment and (b) coevaporates with the solvent. In this study, the target analyte species (acid) is detected via its solid derivative (salt) offering very significant enhancement of the SERS signal because of preferential deposition of the salt at the enhancing surface but without loss of chemical discrimination. The detection of nitric acid and sulfuric acid is demonstrated down to 100 ppb via reaction with ammonium hydroxide to produce the corresponding ammonium salt. This yields an improvement of ∼4 orders of magnitude in the low-concentration detection limit compared with liquid phase detection.
Resumo:
In this paper, we have reported the CO2 solubility in different pure alkyl carbonate solvents (EC, DMC, EMC, DEC) and their binary mixtures as EC/DMC, EC/EMC, and EC/DEC and for electrolytes [solvent + lithium salt] LiX (X = LiPF6, LiTFSI, or LiFAP) as a function of the temperature and salt concentration. To understand the parameters that influence the structure of the solvents and their ability to dissolve CO2, through the addition of a salt, we first analyzed the viscosities of EC/DMC + LiX mixtures by means of a modified Jones–Dole equation. The results were discussed considering the order or disorder introduced by the salt into the solvent organization and ion solvation sphere by calculating the effective solute ion radius, rs. On the basis of these results, the analysis of the CO2 solubility variations with the salt addition was then evaluated and discussed by determining specific ion parameters Hi by using the Setchenov coefficients in solution. This study showed that the CO2 solubility has been affected by the shape, charge density, and size of the ions, which influence the structuring of the solvents through the addition of a salt and the type of solvation of the ions.