126 resultados para femtosecond pulse


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attenuation processes controlling virus fate and transport in the vadose zone of karstified systems can strongly influence groundwater quality. This research compares the breakthrough of two bacteriophage tracers (H40/1 and T7), with contrasting properties, at subsurface monitoring points following application onto an overlying composite sequence of thin organic soil and weathered limestone (epikarst). Short pulse multi-tracer test results revealed that T7 (Source concentration, Co=1.8x106pfu/mL) and H40/1(Co=5.9x106pfu/mL) could reach sampling points 10m below ground less than 30 minutes after tracer application. Contrasting deposition rates, determined from simulated tracer responses, reflected the potential of the ground to differentially attenuate viruses. Prolonged application of both T7 (Co=2.3x104pfu/mL) and H40/1 (Co=1.3x105pfu/mL) over a five hour period during a subsequent test, in which ionic strength levels observed at monitoring points rose consistently, corresponded to a rapid rise in T7 levels, followed by a gradual decline before the end of tracer injection; this reflected reaction-limited deposition in the system. T7’s response contrasted with that of H40/1, whose concentration remained constant over a three hour period before declining dramatically prior to the end of tracer injection. Subsequent application of lower ionic strength tracer-free flush water generated a rapid rise in H40/1 levels and a more gradual release of T7. Results highlight the benefits of employing prolonged injection multi-tracer tests for identifying processes not apparent from conventional short pulse tests. Study findings demonstrate that despite rapid transport rates, the epikarst is capable of physicochemical filtration of viruses and their remobilization, depending on virus type and hydrochemical conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quasi-classical model (QCM) of nuclear wavepacket generation, modification and imaging by three intense ultrafast near-infrared laser pulses has been developed. Intensities in excess of 10(13) W cm(-2) are studied, the laser radiation is non-resonant and pulse durations are in the few-cycle regime, hence significantly removed from the conditions typical of coherent control and femtochemistry. The 1s sigma ground state of the D-2 precursor is projected onto the available electronic states in D-2(+) (1s sigma(g) ground and 2p sigma(u) dissociative) and D+ + D+ (Coulomb explosion) by tunnel ionization by an ultrashort 'pump' pulse, and relative populations are found numerically. A generalized non-adiabatic treatment allows the dependence of the initial vibrational population distribution on laser intensity to be calculated. The wavepacket is approximated as a classical ensemble of particles moving on the 1s sigma(g) potential energy surface (PES), and hence follow trajectories of different amplitudes and frequencies depending on the initial vibrational state. The 'control' pulse introduces a time-dependent polarization of the molecular orbital, causing the PES to be modified according to the dynamic Stark effect and the transition dipole. The trajectories adjust in amplitude, frequency and phase-offset as work is done on or by the resulting force; comparing the perturbed and unperturbed trajectories allows the final vibrational state populations and phases to be determined. The action of the 'probe' pulse is represented by a discrete internuclear boundary, such that elements of the ensemble at a larger internuclear separation are assumed to be photodissociated. The vibrational populations predicted by the QCM are compared to recent quantum simulations (Niederhausen and Thumm 2008 Phys. Rev. A 77 013404), and a remarkable agreement has been found. The applicability of this model to femtosecond and attosecond time-scale experiments is discussed and the relation to established femtochemistry and coherent control techniques are explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slowly evolving, regularly spaced patterns have been observed in proton projection images of plasma channels drilled by intense (greater than or similar to 10(19) W cm(-2)) short (similar to 1 ps) laser pulses propagating in an ionized gas jet. The nature and geometry of the electromagnetic fields generating such patterns have been inferred by simulating the laser-plasma interaction and the following plasma evolution with a two-dimensional particle-in-cell code and the probe proton deflections by particle tracing. The analysis suggests the formation of rows of magnetized soliton remnants, with a quasistatic magnetic field associated with vortexlike electron currents resembling those of magnetic vortices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the dominant mechanism for ion acceleration is the laser radiation pressure, the conversion efficiency of the laser energy into the energy of relativistic ions may be very high. Stability analysis of a thin plasma layer accelerated by the radiation pressure shows that Raleigh-Taylor instability may enhance plasma inhomogeneity. In the linear stage of instability, the plasma layer decays into separate bunches, which are accelerated by the radiation pressure similarly to clusters accelerated under the action of an electromagnetic wave. The energy and luminosity of an ion beam accelerated in the radiation-pressure-dominated regime are calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an efficient and accurate method to study electron detachment from negative ions by a few-cycle linearly polarized laser pulse. The adiabatic saddle-point method of Gribakin and Kuchiev [Phys. Rev. A 55, 3760 (1997)] is adapted to calculate the transition amplitude for a short laser pulse. Its application to a pulse with N optical cycles produces 2(N + 1) saddle points in complex time, which form a characteristic "smile." Numerical calculations are performed for H(-) in a 5-cycle pulse with frequency 0.0043 a.u. and intensities of 10(10), 5 x 10(10), and 10(11) W/cm(2), and for various carrier-envelope phases. We determine the spectrum of the photoelectrons as a function of both energy and emission angle, as well as the angle-integrated energy spectra and total detachment probabilities. Our calculations show that the dominant contribution to the transition amplitude is given by 5-6 central saddle points, which correspond to the strongest part of the pulse. We examine the dependence of the photoelectron angular distributions on the carrier-envelope phase and show that measuring such distributions can provide a way of determining this phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-compression of a relativistic Gaussian laser pulse propagating in a non-uniform plasma is investigated. A linear density inhomogeneity (density ramp) is assumed in the axial direction. The nonlinear Schrodinger equation is first solved within a one-dimensional geometry by using the paraxial formalism to demonstrate the occurrence of longitudinal pulse compression and the associated increase in intensity. Both longitudinal and transverse self-compression in plasma is examined for a finite extent Gaussian laser pulse. A pair of appropriate trial functions, for the beam width parameter (in space) and the pulse width parameter (in time) are defined and the corresponding equations of space and time evolution are derived. A numerical investigation shows that inhomogeneity in the plasma can further boost the compression mechanism and localize the pulse intensity, in comparison with a homogeneous plasma. A 100 fs pulse is compressed in an inhomogeneous plasma medium by more than ten times. Our findings indicate the possibility for the generation of particularly intense and short pulses, with relevance to the future development of tabletop high-power ultrashort laser pulse based particle acceleration devices and associated high harmonic generation. An extension of the model is proposed to investigate relativistic laser pulse compression in magnetized plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of the intensity of a relativistic laser beam propagating through a dense quantum plasma is investigated, by considering different plasma regimes. A cold quantum fluid plasma and then a thermal quantum description(s) is (are) adopted, in comparison with the classical case of reference. Considering a Gaussian beam cross-section, we investigate both the longitudinal compression and lateral/longitudinal localization of the intensity of a finite-radius electromagnetic pulse. By employing a quantum plasma fluid model in combination with Maxwell's equations, we rely on earlier results on the quantum dielectric response, to model beam-plasma interaction. We present an extensive parametric investigation of the dependence of the longitudinal pulse compression mechanism on the electron density in cold quantum plasmas, and also study the role of the Fermi temperature in thermal quantum plasmas. Our numerical results show pulse localization through a series of successive compression cycles, as the pulse propagates through the plasma. A pulse of 100 fs propagating through cold quantum plasma is compressed to a temporal size of approximate to 1.35 attosecond and a spatial size of approximate to 1.08 10(-3) cm. Incorporating Fermi pressure via a thermal quantum plasma model is shown to enhance localization effects. A 100 fs pulse propagating through quantum plasma with a Fermi temperature of 350 K is compressed to a temporal size of approximate to 0.6 attosecond and a spatial size of approximate to 2.4 10(-3) cm. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a new ab initio method for solving the time-dependent Schrödinger equation for multi-electron atomic systems exposed to intense short-pulse laser light. We call the method the R-matrix with time-dependence (RMT) method. Our starting point is a finite-difference numerical integrator (HELIUM), which has proved successful at describing few-electron atoms and atomic ions in strong laser fields with high accuracy. By exploiting the R-matrix division-of-space concept, we bring together a numerical method most appropriate to the multi-electron finite inner region (R-matrix basis set) and a different numerical method most appropriate to the one-electron outer region (finite difference). In order to exploit massively parallel supercomputers efficiently, we time-propagate the wavefunction in both regions by employing Arnoldi methods, originally developed for HELIUM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental evidence of the correlation between the initial electron density of the plasma and electromagnetic soliton excitation at the wake of an intense (10(19) W/cm(2)) and short (1 ps) laser pulse is presented. The spatial distribution of the solitons, together with their late time evolution into post-solitons, is found to be dependent upon the background plasma parameters, in agreement with published analytical and numerical findings. The measured temporal evolution and electrostatic field distribution of the structures are consistent with their late time evolution and the occurrence of multiple merging of neighboring post-solitons. (C) 2011 American Institute of Physics. [doi:10.1063/1.3625261]