109 resultados para electronic apex locator
Resumo:
This invention relates to electronic circuit packages designed to hold high frequency circuits operating particularly, but not exclusively, in the microwave, millimeter wave, and sub-millimeter wave bands. The invention provides a package incorporating a cavity in a material for containment of the circuits, wherein the package further incorporates at least one conductive surface mounted on an inner surface extending into the cavity, the conductivity thereof being adapted to be at least partially absorbent to electromagnetic radiation. The conductive surface according to the present invention will tend to attenuate electromagnetic radiation present within the cavity, and so help to prevent undesired coupling from one point to another within the cavity. The conductivity of the conductive material is preferably arranged to match the impedance of the radiation mode estimated or computed to be present within the cavity.
Resumo:
The electronic redistribution of an ion or atom induced by a sudden recoil of the nucleus occurring during the emission or capture of a neutral particle is theoretically investigated. For one-electron systems, analytical expressions are derived for the electronic transition probabilities to bound and continuum states. The quality of a B-spline basis set approach is evaluated from a detailed comparison with the analytical results. This numerical approach is then used Io study the dynamics of two-electron systems (neutral He and Ne ) using correlated wavefunctions for both the target and daughter ions. The total transition probabilities to discrete states, autoionizing states and direct single- and double-ionization probabilities are calculated from the pseudospectra. Sum rules for transition probabilities involving an initial bound state and a complete final series are discussed.
Resumo:
A survey of the after-effects of recording technology on media arts, particularly in the digital age. The article covers a wide variety of sound artists, including work by the author.
Resumo:
The electronic stopping power of H and He moving through gold is obtained to high accuracy using time-evolving density-functional theory, thereby bringing usual first principles accuracies into this kind of strongly coupled, continuum nonadiabatic processes in condensed matter. The two key unexplained features of what observed experimentally have been reproduced and understood: (i)The nonlinear behavior of stopping power versus velocity is a gradual crossover as excitations tail into the d-electron spectrum; and (ii)the low-velocity H/He anomaly (the relative stopping powers are contrary to established theory) is explained by the substantial involvement of the d electrons in the screening of the projectile even at the lowest velocities where the energy loss is generated by s-like electron-hole pair formation only. © 2012 American Physical Society.
Resumo:
The electronic band structure of vacuum cleaved single-crystal indium selenide has been investigated by X-ray and ultraviolet photoelectron spectroscopy. The valence band consists of three well separated groups, one derived from the Se 4s levels, and two derived from p-like wavefunctions. The band structure and valence band density of states has been calculated using a tight-binding single-layer approximation and all the major features in the experimental spectra are well accounted for. The spin-orbit splitting and electron loss structure associated with the In 4d core level is also reported.
Resumo:
The band structure of the intercalation complex of LiTiS has been computed using a semi-empirical tight-binding method and this is compared with the results of a revised TiS calculation. The results obtained confirm that changes in the basic electrical characteristics of TiS, which occur when it is intercalated with lithium, can be attributed to a rigid-band filling of its lowest unoccupied electron states as has previously been proposed. However, they also suggest that intercalation can act to alter the nature and the dispersion of some of the energy bands in the unintercalated crystal. The bands which are most affected by the process are those which derive from orbitals which have the same symmetry as the lithium 2s orbital, namely, the titanium 4s conduction level and the tightly bound sulphur 3s levels.
Resumo:
Norms constitute a powerful coordination mechanism among heterogeneous agents. In this paper, we propose a rule language to specify and explicitly manage the normative positions of agents (permissions, prohibitions and obligations), with which distinct deontic notions and their relationships can be captured. Our rule-based formalism includes constraints for more expressiveness and precision and allows to supplement (and implement) electronic institutions with norms. We also show how some normative aspects are given computational interpretation. © 2008 Springer Science+Business Media, LLC.
Resumo:
Non-linearities in the electronic stopping power of light projectiles in bulk Al and LiF are addressed from first principles using time-evolving time-dependent density functional theory. In the case of Al, the agreement of the calculations with experiments for H and He projectiles is fair, but a recently observed transition for He from one value of the electronic friction coefficient to a higher value at v ~ 0.3 a.u. is not reproduced by the calculations. For LiF, better accuracy is obtained as compared with previously published simulations, albeit the threshold remains overestimated. © 2013 Elsevier B.V.
Resumo:
We review some recent developments in many body perturbation theory (MBPT) calculations that have enabled the study of interfaces and defects. Starting from the theoretical basis of MBPT, Hedin's equations are presented, leading to the CW and CWI' approximations. We introduce the perturbative approach, that is the one most commonly used for obtaining quasiparticle (QP) energies. The practical strategy presented for dealing with the frequency dependence of the self energy operator is based on either plasmon-pole models (PPM) or the contour deformation technique, with the latter being more accurate. We also discuss the extrapolar method for reducing the number of unoccupied states which need to be included explicity in the calculations. The use of the PAW method in the framework of MBPT is also described. Finally, results which have been obtained using, MBPT for band offsets a interfaces and for defects presented, with companies on the main difficulties and cancels.
Schematic representation of the QP corrections (marked with ) to the band edges (E and E-v) and a defect level (F) for a Si/SiO2 interface (Si and O atoms are represented in blue and red, respectively, in the ball and stick model) with an oxygen vacancy leading to a Si-Si bond (the Si atoms involved in this bond are colored light blue).
Resumo:
Quasiparticle calculations are performed to investigate the electronic band structures of various polymorphs of Hf and Zr oxides. The corrections with respect to density-functional-theory results are found to depend only weakly on the crystal structure. Based on these bulk calculations as well as those for bulk Si, the effect of quasiparticle corrections is also investigated for the band offsets at the interface between these oxides and Si assuming that the lineup of the potential at the interface is reproduced correctly within density-functional theory. On the one hand, the valence-band offsets are practically unchanged with a correction of a few tenths of electron volts. On the other hand, conduction-band offsets are raised by 1.3-1.5 eV. When applied to existing calculations for the offsets at the density-functional-theory level, our quasiparticle corrections provide results in good agreement with the experiment.
Resumo:
The electronic properties of zircon and hafnon, two wide-gap high-kappa materials, are investigated using many-body perturbation theory (MBPT) combined with the Wannier interpolation technique. For both materials, the calculated band structures differ from those obtained within density-functional theory and MBPT by (i) a slight displacement of the highest valence-band maximum from the Gamma point and (ii) an opening of the indirect band gap to 7.6 and 8.0 eV for zircon and hafnon, respectively. The introduction of vertex corrections in the many-body self-energy does not modify the results except for a global rigid shift of the many-body corrections.
Resumo:
An extensive investigation of the ferromagnetic compound TlCo2S2 has resulted in new information on the electronic and magnetic structure. Electronic structure calculations showed that magnetic ordering is energetically favorable with a clear driving force for ferromagnetic coupling within the cobalt layers. TlCo2S2 is metallic and the conductivity is due to holes in the valence band. XPS single crystal measurements did not show evidence of mixed oxidation states of cobalt. Neutron powder diffraction resulted in a ferromagnetic structure with the magnetic moment in the ab-plane. The derived magnetic moment of the cobalt atom is 0.65(2) mu(B) at 10 K and is in very good agreement with the value, mu(sat) = 0.65(1) mu(B) at 10 K, inferred from the magnetic hysteresis curve. (C) 2004 Elsevier Inc. All rights reserved.