116 resultados para dating at Colby
Resumo:
We report the serendipitous discovery of a new, very low luminosity, cool degenerate in the region of Taurus. The object was found as a very high proper-motion star (mu = 1.'' 3 yr(-1)) on seven I-band UK Schmidt Telescope plates, dating from 1987 to 1994, via digitized scans from the new, fast, high-precision microdensitometer SuperCOSMOS. Photometry and spectrophotometry indicate that the object has a temperature comparable to those of the handful of coolest white dwarfs currently known (T similar to 3900 K). We discuss the relevance of this discovery to current research concerning Galactic structure and evolution.
Resumo:
This paper presents significant new insights into the appearance of agriculture at the north- western edge of Europe, focusing on Neolithic Ireland (4000-2500 cal BC). Previous studies were based upon a limited plant macro-remains dataset, as much of the Irish evidence is unpublished. A research project, 'Cultivating Societies', was implemented to examine the nature, timing and extent of agricultural activity in Neolithic Ireland through collation and analysis of different strands of published and unpublished archaeological and environmental evidence, with a particular focus on plant macro- remains, pollen, settlement and 14C data. Plant macro-remains from a total of 52 excavated sites were collated and analysed, representing the most comprehensive study to date of Neolithic plant remains from this region. Cereals were present at many locations and site types, sometimes in large quantities and most often at sites dating to the earlier Neolithic (3750-3600 cal BC). Emmer wheat was the dominant crop, at least at this time. Other crops included naked and hulled barley, naked wheat, einkorn wheat and flax. Analysis of arable weeds indicates that early plots were not managed under a shifting cultivation regime, which has important implications for understanding Neolithic settlement practices and how communities engaged with landscapes. The variety of crops cultivated in Neolithic Ireland is similar to those in Britain, reflecting a decreasing diversity in crop types as agriculture spread from south-east to north-west Europe.
Resumo:
Here we present a series of six maps illustrating the distribution of end moraines in Far NE Russia. The maps are the first to systematically document the distribution of moraines across this region from the Verkhoyansk Mountains at the westernmost limit of our study area to the Chukchi Peninsula in the NE and to Kamchatka in the south, covering almost 4 million km2. Moraines were identified and mapped from analysis of satellite images and digital elevation model data. A total of 2173 moraines are identified, and we highlight some 197 more speculative features (perhaps moraines) that require further investigation. The distribution of moraines indicates that much of the region, now largely ice-free, was formerly occupied by glaciers centred upon the region’s uplands and that glacier outlets were typically < 200 km in length. The maps demonstrate the usefulness of remote sensing to derive an improved understanding of the glacial history of this vast and isolated region, and we present them to stimulate further work and act as a systematic framework for targeted geochronometric dating.
Resumo:
A single raised bog from the eastern Netherlands has been repeatedly analysed and 14C dated over the past few decades. Here we assess the within-site variability of fossil proxy data through comparing the regional
pollen, macrofossils and non-pollen palynomorphs of four of these profiles. High-resolution chronologies were obtained using 14C dating and Bayesian age-depth modelling. Where chronologies of profiles overlap, proxy curves are compared between the profiles using greyscale graphs that visualise chronological uncertainties. Even at this small spatial scale, there is considerable variability of the fossil proxy curves. Implications regarding signal (climate) and noise (internal dynamics) of the different types of fossil proxies are discussed. Single cores are of limited value for reconstructing centennial-scale climate change, and only by combining multiple cores and proxies can we obtain a reliable understanding of past environmental change and possible forcing factors (e.g., solar variability).
Resumo:
Acidity peaks in Greenland ice cores have been used as critical reference horizons for synchronizing ice core records, aiding the construction of a single Greenland Ice Core Chronology (GICC05) for the Holocene. Guided by GICC05, we examined sub-sections of three Greenland cores in the search for tephra from specific eruptions that might facilitate the linkage of ice core records, the dating of prehistoric tephras and the understanding of the eruptions. Here we report the identification of 14 horizons with tephra particles, including 11 that have not previously been reported from the North Atlantic region and that have the potential to be valuable isochrons. The positions of tephras whose major element data are consistent with ash from the Katmai AD 1912 and Öraefajökull AD 1362 eruptions confirm the annually resolved ice core chronology for the last 700 years. We provide a more refined date for the so-called “AD860B” tephra, a widespread isochron found across NW Europe, and present new evidence relating to the 17th century BC Thera/Aniakchak debate that shows N. American eruptions likely contributed to the acid signals at this time. Our results emphasize the variable spatial and temporal distributions of volcanic products in Greenland ice that call for a more cautious approach in the attribution of acid signals to specific eruptive events.
Resumo:
Marine radiocarbon bomb-pulse time histories of annually resolved archives from temperate regions have been underexploited. We present here series of Delta C-14 excess from known-age annual increments of the long-lived bivalve mollusk Arctica islandica from 4 sites across the coastal North Atlantic (German Bight, North Sea; Tromso, north Norway; Siglufjordur, north Icelandic shelf; Grimsey, north Icelandic shelf) combined with published series from Georges Bank and Sable Bank (NW Atlantic) and the Oyster Ground (North Sea). The atmospheric bomb pulse is shown to be a step-function whose response in the marine environment is immediate but of smaller amplitude and which has a longer decay time as a result of the much larger marine carbon reservoir. Attenuation is determined by the regional hydrographic setting of the sites, vertical mixing, processes controlling the isotopic exchange of C-14 at the air-sea boundary, C-14 content of the freshwater flux, primary productivity, and the residence time of organic matter in the sediment mixed layer. The inventories form a sequence from high magnitude-early peak (German Bight) to low magnitude-late peak (Grimsey). All series show a rapid response to the increase in atmospheric Delta C-14 excess but a slow response to the subsequent decline resulting from the succession of rapid isotopic air-sea exchange followed by the more gradual isotopic equilibration in the mixed layer due to the variable marine carbon reservoir and incorporation of organic carbon from the sediment mixed layer. The data constitute calibration series for the use of the bomb pulse as a high-resolution dating tool in the marine environment and as a tracer of coastal ocean water masses.
Resumo:
The Great Cave of Niah in Sarawak (northern Borneo) came into the gaze of Western Science through the work of Alfred Russell Wallace, who came to Sarawak in the 1850s to search for ‘missing links’ in his pioneering studies of evolution and the natural history of Island Southeast Asia and Australasia. The work of Tom and Barbara Harrisson in the 1950s and 1960s placed the Great Cave, and particularly their key find, the ‘Deep Skull’, at the nexus of the evolving archaeological framework for the region: for decades the skull, dated in 1958 by adjacent charcoal to c.40,000 BP, was the oldest fossil of an anatomically modern human anywhere in the world and thus critical to ideas about human evolution and dispersal. Although several authorities later questioned the provenance and antiquity of the Deep Skull, renewed investigations of the Harrisson excavations since 2000 have shown that it can be attributed securely to a specific location in the Pleistocene stratigraphy, with direct U-series dating on a piece of the skull indicating an age for it of c.37,500 BP and the first evidence for associated human activity at the site going back to c.50,000 BP. The new work also indicates that the skull is part of a cultural deposit, perhaps a precursor to the long tradition in Borneo of processing of the dead and secondary burial. These indicators of cultural complexity chime with the complexity of the subsistence behaviour of the early users of the caves discussed by Philip Piper and Ryan Rabett in chapter ten of this volume.
Resumo:
Climate change, whether gradual or sudden, has frequently been invoked as a causal factor to explain many aspects of cultural change during the prehistoric and early historic periods. Critiquing such theories has often proven difficult, not least because of the imprecise dating of many aspects of the palaeoclimate or archaeological records and the difficulties of merging the two strands of research. Here we consider one example of the archaeological record – peatland site construction in Ireland – which has previously been interpreted in terms of social response to climate change and examine whether close scrutiny of the archaeological and palaeoenvironmental records uphold the climatically deterministic hypotheses. We evaluate evidence for phasing in the temporal distribution of trackways and related sites in Irish peatlands, of which more than 3,500 examples have been recorded, through the examination of ~350 dendrochronological and 14C dates from these structures. The role of climate change in influencing when such sites were constructed is assessed by comparing visually and statistically the frequency of sites over the last 4,500 years with well-dated, multi-proxy climate reconstructions from Irish peatlands. We demonstrate that national patterns of “peatland activity” exist that indicate that the construction of sites in bogs was neither a constant nor random phenomenon. Phases of activity (i.e. periods in which the number of structures increased), as well as the ‘lulls’ that separate them, show no consistent correlation with periods of wetter or drier conditions on the bogs, suggesting that the impetus for the start or cessation of such activity was not climatically-determined. We propose that trigger(s) for peatland site construction in Ireland must instead also be sought within the wider, contemporary social background. Perhaps not surprisingly, a comparison with archaeological and palynological evidence shows that peatland activity tends to occur at times of more expansive settlement and land-use, suggesting that the bogs were used when the landscape was being more widely occupied. Interestingly, the lulls in peatland site construction coincide with transitional points between nominal archaeological phases, typically defined on the basis of their material culture, implying that there may indeed have been a cultural discontinuity at these times. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Causes of late Quaternary extinctions of large mammals (" megafauna") continue to be debated, especially for continental losses, because spatial and temporal patterns of extinction are poorly known. Accurate latest appearance dates (LADs) for such taxa are critical for interpreting the process of extinction. The extinction of woolly mammoth and horse in northwestern North America is currently placed at 15,000-13,000 calendar years before present (yr BP), based on LADs from dating surveys of macrofossils (bones and teeth). Advantages of using macrofossils to estimate when a species became extinct are offset, however, by the improbability of finding and dating the remains of the last-surviving members of populations that were restricted in numbers or con-fined to refugia. Here we report an alternative approach to detect 'ghost ranges' of dwindling populations, based on recovery of ancient DNA from perennially frozen and securely dated sediments (sedaDNA). In such contexts, sedaDNA can reveal the molecular presence of species that appear absent in the macrofossil record. We show that woolly mammoth and horse persisted in interior Alaska until at least 10,500 yr BP, several thousands of years later than indicated from macrofossil surveys. These results contradict claims that Holocene survival of mammoths in Beringia was restricted to ecologically isolated high-latitude islands. More importantly, our finding that mammoth and horse overlapped with humans for several millennia in the region where people initially entered the Americas challenges theories that megafaunal extinction occurred within centuries of human arrival or were due to an extraterrestrial impact in the late Pleistocene.
Resumo:
Last interglacial sediments in unglaciated Alaska and Yukon (eastern Beringia) are commonly identified by palaeoecological indicators and stratigraphic position ~2-5m above the regionally prominent Old Crow tephra (124±10ka). We demonstrate that this approach can yield erroneous age assignments using data from a new exposure at the Palisades, a site in interior Alaska with numerous exposures of last interglacial sediments. Tephrochronology, stratigraphy, plant macrofossils, pollen and fossil insects from a prominent wood-rich organic silt unit are all consistent with a last interglacial age assignment. However, six 14C dates on plant and insect macrofossils from the organic silt range from non-finite to 4.0 14C ka BP, indicating that the organic silt instead represents a Holocene deposit with a mixed-age assemblage of organic material. In contrast, wood samples from presumed last interglacial organic-rich sediments elsewhere at the Palisades, in a similar stratigraphic position with respect to Old Crow tephra, yield non-finite 14C ages. Given that local permafrost thaw since the last interglaciation may facilitate reworking of older sediments into new stratigraphic positions, minimum constraining ages based on 14C dating or other methods should supplement age assignments for last interglacial sediments in eastern Beringia that are based on palaeoecology and stratigraphic association with Old Crow tephra.
Resumo:
The Kawakawa/Oruanui tephra (KOT) is a key chronostratigraphic marker in terrestrial and marine deposits of the New Zealand (NZ) sector of the southwest Pacific. Erupted early during the Last Glacial Maximum (LGM), the wide distribution of the KOT enables inter-regional alignment of proxy records and facilitates comparison between NZ climatic variations and those from well-dated records elsewhere. We present 22 new radiocarbon ages for the KOT from sites and materials considered optimal for dating, and apply Bayesian statistical methods via OxCal4.1.7 that incorporate stratigraphic information to develop a new age probability model for KOT. The revised calibrated age, ±2 standard deviations, for the eruption of the KOT is 25,360 ± 160 cal yr BP. The age revision provides a basis for refining marine reservoir ages for the LGM in the southwest Pacific.
Resumo:
Recently, Bayesian statistical software has been developed for age-depth modeling (wiggle-match dating) of sequences of densely spaced radiocarbon dates from peat cores. The method is described in non-statistical terms, and is compared with an alternative method of chronological ordering of 14C dates. Case studies include the dating of the start of agriculture in the northeastern part of the Netherlands, and of a possible Hekla-3 tephra layer in the same country. We discuss future enhancements in Bayesian age modeling.
Resumo:
Evidence of 11-year Schwabe solar sunspot cycles, El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) were detected in an annual record of diatomaceous laminated sediments from anoxic Effingham Inlet, Vancouver Island, British Columbia. Radiometric dating and counting of annual varves dates the sediments from AD 1947-1993. Intact sediment slabs were X-rayed for sediment structure (lamina thickness and composition based on gray-scale), and subsamples were examined for diatom abundances and for grain size. Wavelet analysis reveals the presence of ~2-3, ~4.5, ~7 and ~9-12-year cycles in the diatom record and an w11e13 year record in the sedimentary varve thickness record. These cycle lengths suggest that both ENSO and the sunspot cycle had an influence on primary productivity and sedimentation patterns. Sediment grain size could not be correlated to the sunspot cycle although a peak in the grain size data centered around the mid-1970s may be related to the 1976-1977 Pacific climate shift, which occurred when the PDO index shifted from negative (cool conditions) to positive (warm conditions). Additional evidence of the PDO regime shift is found in wavelet and cross-wavelet results for Skeletonema costatum, a weakly silicified variant of S. costatum, annual precipitation and April to June precipitation. Higher spring (April/May) values of the North Pacific High pressure index during sunspot minima suggest that during this time, increased cloud cover and concomitant suppression of the Aleutian Low (AL) pressure system led to strengthened coastal upwelling and enhanced diatom production earlier in the year. These results suggest that the 11-year solar cycle, amplified by cloud cover and upwelling changes, as well as ENSO, exert significant influence on marine primary productivity in the northeast Pacific. The expression of these cyclic phenomena in the sedimentary record were in turn modulated by the phase of PDO, as indicated by the change in period of ENSO and suppression of the solar signal in the record after the 1976-1977 regime shift. © 2013 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
Drill cores from the inner-alpine valley terrace of Unterangerberg, located in the Eastern Alps of Austria, offer first insights into a Pleistocene sedimentary record that was not accessible so far. The succession comprises diamict, gravel, sand, lignite and thick, fine grained sediments. Additionally, cataclastic deposits originating from two paleo-landslide events are present. Multi-proxy analyses including sedimentological and palynological investigations as well as radiocarbon and luminescence data record the onset of the last glacial period (Wurmian) at Unterangerberg at similar to 120-110 ka. This first time period, correlated to the MIS 5d, was characterised by strong fluvial aggradation under cold climatic conditions, with only sparse vegetation cover. Furthermore, two large and quasi-synchronous landslide events occurred during this time interval. No record of the first Early Wiirmian interstadial (MIS 5c) is preserved. During the second Early Wiirmian interstadial (MIS 5a), the local vegetation was characterised by a boreal forest dominated by Picea, with few thermophilous elements. The subsequent collapse of the vegetation is recorded by sediments dated to similar to 70-60 ka (i.e. MIS 4), with very low pollen concentrations and the potential presence of permafrost. Climatic conditions improved again between similar to 55 and 45 ka (MIS 3) and cold-adapted trees re-appeared during interstadials, forming an open forest vegetation. MIS 3 stadials were shorter and less severe than the MIS 4 at Unterangerberg, and vegetation during these cold phases was mainly composed of shrubs, herbs and grasses, similar to what is known from today's alpine timberline. The Unterangerberg record ended at similar to 45 ka and/or was truncated by ice during the Last Glacial Maximum. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We present pollen records from three sites in south Westland, New Zealand, that document past vegetation and inferred climate change between approximately 30,000 and 15,000 cal. yr BP. Detailed radiocarbon dating of the enclosing sediments at one of those sites, Galway tarn, provides a more robust chronology for the structure and timing of climate-induced vegetation change than has previously been possible in this region. The Kawakawa/Oruanui tephra, a key isochronous marker, affords a precise stratigraphic link across all three pollen records, while other tie points are provided by key pollen-stratigraphic changes which appear to be synchronous across all three sites. Collectively, the records show three episodes in which grassland, interpreted as indicating mostly cold subalpine to alpine conditions, was prevalent in lowland south Westland, separated by phases dominated by subalpine shrubs and montane-lowland trees, indicating milder interstadial conditions. Dating, expressed as a Bayesian-estimated single 'best' age followed in parentheses by younger/older bounds of the 95% confidence modelled age range, indicates that a cold stadial episode, whose onset was marked by replacement of woodland by grassland, occurred between 28,730 (29,390-28,500) and 25,470 (26,090-25,270) cal. yr BP (years before AD, 1950), prior to the deposition of the Kawakawa/Oruanui tephra. Milder interstadial conditions prevailed between 25,470 (26,090-25,270) and 24,400 (24,840-24,120) cal. yr BP and between 22,630 (22,930-22,340) and 21,980 (22,210-21,580) cal. yr BP, separated by a return to cold stadial conditions between 24,400 and 22,630 cal. yr BP. A final episode of grass-dominated vegetation, indicating cold stadial conditions, occurred from 21,980 (22,210-21,580) to 18,490 (18,670-17,950) cal. yr BP. The decline in grass pollen, indicating progressive climate amelioration, was well advanced by 17,370 (17,730-17,110) cal. yr BP, indicating that the onset of the termination in south Westland occurred sometime between ca 18,490 and ca 17,370 cal. yr BP. A similar general pattern of stadials and interstadials is seen, to varying degrees of resolution but generally with lesser chronological control, in many other paleoclimate proxy records from the New Zealand region. This highly resolved chronology of vegetation changes from southwestern New Zealand contributes to the examination of past climate variations in the southwest Pacific region. The stadial and interstadial episodes defined by south Westland pollen records represent notable climate variability during the latter part of the Last Glaciation. Similar climatic patterns recorded farther afield, for example from Antarctica and the Southern Ocean, imply that climate variations during the latter part of the Last Glaciation and the transition to the Holocene interglacial were inter-regionally extensive in the Southern Hemisphere and thus important to understand in detail and to place into a global context. © 2013 Elsevier Ltd. All rights reserved.