82 resultados para cool roofs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mfabeni peatland is the only known sub-tropical coastal fen that transcends the Last Glacial Maximum (LGM). This ca. 10m thick peat sequence provides a continuous sedimentation record spanning from the late Pleistocene to present (basal age c. 47kcalyr BP). We investigated the paleaeoenvironmental controls on peat formation and organic matter source input at the Mfabeni fen by: 1) exploring geochemical records (mass accumulation rate, total organic carbon, carbon accumulation rate, δC, δN and C/N ratio) to delineate primary production, organic matter source input, preservation and diagenetic processes, and 2) employ these geochemical signatures to reconstruct the palaeoenvironmental conditions and prevailing climate that drove carbon accumulation in the peatland. We established that the Mfabeni peat sediments have undergone minimal diagenetic alteration. The peat sequence was divided into 5 linear sedimentation rate (LSR) stages indicating distinct changes in climate and hydrological conditions: LSR stage 1 (c. 47 to c. 32.2kcalyr BP): predominantly cool and wet climate with C4 plant assemblages, interrupted by two short warming events. LSR stage 2 (c. 32.2 to c. 27.6kcalyr BP): dry and windy climate followed by a brief warm and wet period with increased C4 sedge swamp vegetation. LSR stage 3 (c. 27.6 to c. 20.3kcalyr BP): initial cool and wet period with prevailing C4 sedge plant assemblage until c. 23kcalyr BP; then an abrupt change to dry and cool glacial conditions and steady increases in C3 grasses. LSR stage 4 (c. 20.3 to c. 10.4kcalyr BP): continuation of cool and dry conditions and strong C3 grassland signature until c. 15kcalyr BP, after which precipitation increases. LSR stage 5 (c. 10.4kcalyr BP to present): characterised by extreme fluctuations between pervasive wet and warm to cool interglacial conditions with intermittent abrupt millennial-scale cooling/drying events and oscillations between C3 and C4 plant assemblages. In this study we reconstructed a high-resolution record of local hydrology, bulk plant assemblage and inferred climate since the Late Pleistocene, which suggest an anti-phase link between Southern African and the Northern Hemisphere, most notably during Heinrich (5 to 2) and Younger Dryas events. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We accurately determine the fundamental system parameters of the neutron star X-ray transient Cen X-4 solely using phase-resolved high-resolution UV-Visual Echelle Spectrograph spectroscopy. We first determine the radial-velocity curve of the secondary star and then model the shape of the phase-resolved absorption line profiles using an X-ray binary model. The model computes the exact rotationally broadened, phase-resolved spectrum and does not depend on assumptions about the rotation profile, limb-darkening coefficients and the effects of contamination from an accretion disc. We determine the secondary star-to-neutron star binary mass ratio to be 0.1755 ± 0.0025, which is an order of magnitude more accurate than previous estimates. We also constrain the inclination angle to be 32^{+8}_{-2} degrees. Combining these values with the results of the radial-velocity study gives a neutron star mass of 1.94^{+0.37}_{-0.85}M⊙ consistent with previous estimates. Finally, we perform the first Roche tomography reconstruction of the secondary star in an X-ray binary. The tomogram reveals surface inhomogeneities that are due to the presence of cool starspots. A large cool polar spot, similar to that seen in Doppler images of rapidly rotating isolated stars, is present on the Northern hemisphere of the K7 secondary star and we estimate that ~4 percent of the total surface area of the donor star is covered with spots.This evidence for starspots supports the idea that magnetic braking plays an important role in the evolution of low-mass X-ray binaries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present Rossiter-McLaughlin observations of WASP-13b and WASP-32b and determine the sky-projected angle between the normal of the planetary orbit and the stellar rotation axis (λ). WASP-13b and WASP-32b both have prograde orbits and are consistent with alignment with measured sky-projected angles of λ =8°^{+13}_{-12} and λ =-2°^{+17}_{-19}, respectively. Both WASP-13 and WASP-32 have Teff < 6250 K, and therefore, these systems support the general trend that aligned planetary systems are preferentially found orbiting cool host stars. A Lomb-Scargle periodogram analysis was carried out on archival SuperWASP data for both systems. A statistically significant stellar rotation period detection (above 99.9 per cent confidence) was identified for the WASP-32 system with Prot =11.6 ± 1.0 days. This rotation period is in agreement with the predicted stellar rotation period calculated from the stellar radius, R*, and vsin i if a stellar inclination of i* =90° is assumed. With the determined rotation period, the true 3D angle between the stellar rotation axis and the planetary orbit, ψ, was found to be ψ = 11° ± 14°. We conclude with a discussion on the alignment of systems around cool host stars with Teff < 6150 K by calculating the tidal dissipation time-scale. We find that systems with short tidal dissipation time-scales are preferentially aligned and systems with long tidal dissipation time-scales have a broad range of obliquities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context: Mg VIII emission lines are observed in a range of astronomical objects such as the Sun, other cool stars and in the coronal line region of Seyfert galaxies. Under coronal conditions Mg VIII emits strongly in the extreme ultraviolet (EUV) and soft X-ray spectral regions which makes it an ideal ion for plasma diagnostics.

Aims. Two theoretical atomic models, consisting of 125 fine structure levels, are developed for the Mg VIII ion. The 125 levels arise from the 2s(2)2p, 2s(2)p2, 2p(3), 2s(2)3s, 2s(2)3p, 2s(2)3d, 2s2p3s, 2s2p3p, 2s2p3d, 2p(2)3s, 2p(2)3p and 2p(2)3d configurations. Electron impact excitation collision strengths and radiative transition probabilities are calculated for both Mg VIII models, compared with existing data, and the best model selected to generate a set of theoretical emission line intensities. The EUV lines, covering 312-790 angstrom, are compared with existing solar spectra (SERTS-89 and SUMER), while the soft X-ray transitions (69-97 angstrom) are examined for potential density diagnostic line ratios and also compared with the limited available solar and stellar observational data.

Methods. The R-matrix codes Breit-Pauli RMATRXI and RMATRXII are utilised, along with the PSTGF code, to calculate the collision strengths for two Mg VIII models. Collision strengths are averaged over a Maxwellian distribution to produce the corresponding effective collision strengths for use in astrophysical applications. Transition probabilities are also calculated using the CIV3 atomic structure code. The best data are then incorporated into the modelling code CLOUDY and line intensities generated for a range of electron temperatures and densities appropriate to solar and stellar coronal plasmas.

Results. The present effective collision strengths are compared with two previous calculations. Good levels of agreement are found with the most recent, but there are large differences with the other for forbidden transitions. The resulting line intensities compare favourably with the observed values from the SERTS-89 and SUMER spectra. Theoretical soft X-ray emission lines are presented and several density diagnostic line ratios examined, which are in reasonable agreement with the limited observational data available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present Roche tomograms of the K4V secondary star in the cataclysmic variable AE Aqr, reconstructed from two data sets taken 9 d apart, and measure the differential rotation of the stellar surface. The tomograms show many large, cool starspots, including a large high-latitude spot and a prominent appendage down the trailing hemisphere. We find two distinct bands of spots around 22° and 43° latitude, and estimate a spot coverage of 15.4-17 per cent on the Northern hemisphere. Assuming a solar-like differential rotation law, the differential rotation of AE Aqr was measured using two different techniques. The first method yields an equator-pole lap time of 269 d and the second yields a lap time of 262 d. This shows that the star is not fully tidally locked, as was previously assumed for CVs, but has a co-rotation latitude of ˜40°. We discuss the implications that these observations have on stellar dynamo theory, as well as the impact that spot traversal across the L1 point may have on accretion rates in CVs as well as some of their other observed properties. The entropy landscape technique was applied to determine the system parameters of AE Aqr. For the two independent data sets, we find M1 = 1.20 and 1.17 M⊙, M2 = 0.81 and 0.78 M⊙, and orbital inclinations of 50° to 51° at optimal systemic velocities of γ = -64.7 and -62.9 km s-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To obtain cm/s precision, stellar surface magneto-convection must be disentangled from observed radial velocities (RVs). In order to understand and remove the convective signature, we create Sun-as-a-star model observations based on a 3D magnetohydrodynamic solar simulation. From these Sun-as-a-star model observations, we find several line characteristics are correlated with the induced RV shifts. The aim of this campaign is to feed directly into future high precision RV studies, such as the search for habitable, rocky worlds, with forthcoming spectrographs such as ESPRESSO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 2010 Eyjafjallajökull lasted 39 days and had 4 different phases, of which the first and third (14–18 April and 5–6 May) were most intense. Most of this period was dominated by winds with a northerly component that carried tephra toward Europe, where it was deposited in a number of locations and was sampled by rain gauges or buckets, surface swabs, sticky-tape samples and air filtering. In the UK, tephra was collected from each of the Phases 1–3 with a combined range of latitudes spanning the length of the country. The modal grain size of tephra in the rain gauge samples was 25 um, but the largest grains were 100 um in diameter and highly vesicular. The mass loading was equivalent to 8–218 shards cm2, which is comparable to tephra layers from much larger past eruptions. Falling tephra was collected on sticky tape in the English Midlands on 19, 20 and 21st April (Phase 2), and was dominated by aggregate clasts (mean diameter 85 um, component grains <10 um). SEM-EDS spectra for aggregate grains contained an extra peak for sulphur, when compared to control samples from the volcano, indicating that they were cemented by sulphur-rich minerals e.g. gypsum (CaSO4⋅H2O). Air quality monitoring stations did not record fluctuations in hourly PM10 concentrations outside the normal range of variability during the eruption, but there was a small increase in 24-hour running mean concentration from 21–24 April (Phase 2). Deposition of tephra from Phase 2 in the UK indicates that transport of tephra from Iceland is possible even for small eruption plumes given suitable wind conditions. The presence of relatively coarse grains adds uncertainty to concentration estimates from air quality sensors, which are most sensitive to grain sizes <10 um. Elsewhere, tephra was collected from roofs and vehicles in the Faroe Islands (mean grain size 40 um, but 100 um common), from rainwater in Bergen in Norway (23–91 um) and in air filters in Budapest, Hungary (2–6 um). A map is presented summarizing these and other recently published examples of distal tephra deposition from the Eyjafjallajökull eruption. It demonstrates that most tephra deposited on mainland Europe was produced in the highly explosive Phase 1 and was carried there in 2–3 days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cloud computing is a technological advancementthat provide resources through internet on pay-as-you-go basis.Cloud computing uses virtualisation technology to enhance theefficiency and effectiveness of its advantages. Virtualisation isthe key to consolidate the computing resources to run multiple instances on each hardware, increasing the utilization rate of every resource, thus reduces the number of resources needed to buy, rack, power, cool, and manage. Cloud computing has very appealing features, however, lots of enterprises and users are still reluctant to move into cloud due to serious security concerns related to virtualisation layer. Thus, it is foremost important to secure the virtual environment.In this paper, we present an elastic framework to secure virtualised environment for trusted cloud computing called Server Virtualisation Security System (SVSS). SVSS provide security solutions located on hyper visor for Virtual Machines by deploying malicious activity detection techniques, network traffic analysis techniques, and system resource utilization analysis techniques.SVSS consists of four modules: Anti-Virus Control Module,Traffic Behavior Monitoring Module, Malicious Activity Detection Module and Virtualisation Security Management Module.A SVSS prototype has been deployed to validate its feasibility,efficiency and accuracy on Xen virtualised environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the sky-projected orbital obliquity (spin–orbit angle) of WASP-84 b, a 0.69MJup planet in an 8.52 day orbit around a G9V/K0V star, to be λ = −0.3 ± 1.7°. We obtain a true obliquity of ψ = 17.3 ± 7.7° from a measurement of the inclination of the stellar spin axis with respect to the sky plane. Due to the young age and the weak tidal forcing of the system, we suggest that the orbit of WASP-84b is unlikely to have both realigned and circularized from the misaligned and/or eccentric orbit likely to have arisen from high-eccentricity migration. Therefore we conclude that the planet probably migrated via interaction with the protoplanetary disk. This would make it the first “hot Jupiter” (P d < 10 ) to have been shown to have migrated via this pathway. Further, we argue that the distribution of obliquities for planets orbiting cool stars (Teff < 6250 K) suggests that high-eccentricity migration is an important pathway for the formation of short-orbit, giant planets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The masses and the evolutionary states of the progenitors of core-collapse supernovae are not well constrained by direct observations. Stellar evolution theory generally predicts that massive stars with initial masses less than about 30M_sol should undergo core-collapse when they are cool M-type supergiants. However the only two detections of a SN progenitor before explosion are SN1987A and SN1993J, and neither of these was an M-type supergiant. Attempting to identify the progenitors of supernovae is a difficult task, as precisely predicting the time of explosion of a massive star is impossible for obvious reasons. There are several different types of supernovae which have different spectral and photometric evolution, and how exactly these are related to the evolutionary states of the progenitor stars is not currently known. I will describe a novel project which may allow the direct identification of core-collapse supernovae progenitors on pre-explosion images of resolved, nearby galaxies. This project is now possible with the excellent image archives maintained by several facilities and will be enhanced by the new initiatives to create Virtual Observatories, the earliest of which ASTROVIRTEL is already producing results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. We investigated the response of the solar atmosphere to non-thermal electron beam heating using the radiative transfer and hydrodynamics modelling code RADYN. The temporal evolution of the parameters that describe the non-thermal electron energy distribution were derived from hard X-ray observations of a particular flare, and we compared the modelled and observed parameters.

Methods. The evolution of the non-thermal electron beam parameters during the X1.5 solar flare on 2011 March 9 were obtained from analysis of RHESSI X-ray spectra. The RADYN flare model was allowed to evolve for 110 s, after which the electron beam heating was ended, and was then allowed to continue evolving for a further 300 s. The modelled flare parameters were compared to the observed parameters determined from extreme-ultraviolet spectroscopy.

Results. The model produced a hotter and denser flare loop than that observed and also cooled more rapidly, suggesting that additional energy input in the decay phase of the flare is required. In the explosive evaporation phase a region of high-density cool material propagated upward through the corona. This material underwent a rapid increase in temperature as it was unable to radiate away all of the energy deposited across it by the non-thermal electron beam and via thermal conduction. A narrow and high-density (ne ≤ 1015 cm-3) region at the base of the flare transition region was the source of optical line emission in the model atmosphere. The collision-stopping depth of electrons was calculated throughout the evolution of the flare, and it was found that the compression of the lower atmosphere may permit electrons to penetrate farther into a flaring atmosphere compared to a quiet Sun atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design optimization of cold-formed steel portal frame buildings is considered in this paper. The objective function is based on the cost of the members for the main frame and secondary members (i.e., purlins, girts, and cladding for walls and roofs) per unit area on the plan of the building. A real-coded niching genetic algorithm is used to minimize the cost of the frame and secondary members that are designed on the basis of ultimate limit state. It iis shown that the proposed algorithm shows effective and robust capacity in generating the optimal solution, owing to the population's diversity being maintained by applying the niching method. In the optimal design, the cost of purlins and side rails are shown to account for 25% of the total cost; the main frame members account for 27% of the total cost, claddings for the walls and roofs accounted for 27% of the total cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past decade, several rapidly evolving transients have been discovered whose timescales and luminosities are not easily explained by traditional supernovae (SNe) models. The sample size of these objects has remained small due, at least in part, to the challenges of detecting short timescale transients with traditional survey cadences. Here we present the results from a search within the Pan-STARRS1 Medium Deep Survey (PS1-MDS) for rapidly evolving and luminous transients. We identify 10 new transients with a time above half-maximum (t1/2) of less than 12 days and -16.5 > M > -20 mag. This increases the number of known events in this region of SN phase space by roughly a factor of three. The median redshift of the PS1-MDS sample is z = 0.275 and they all exploded in star-forming galaxies. In general, the transients possess faster rise than decline timescale and blue colors at maximum light (gP1-rP1 ≲ -0.2). Best-fit blackbodies reveal photospheric temperatures/radii that expand/cool with time and explosion spectra taken near maximum light are dominated by a blue continuum, consistent with a hot, optically thick, ejecta. We find it difficult to reconcile the short timescale, high peak luminosity (L > 1043erg s-1), and lack of UV line blanketing observed in many of these transients with an explosion powered mainly by the radioactive decay of 56Ni. Rather, we find that many are consistent with either (1) cooling envelope emission from the explosion of a star with a low-mass extended envelope that ejected very little (<0.03 M) radioactive material, or (2) a shock breakout within a dense, optically thick, wind surrounding the progenitor star. After calculating the detection efficiency for objects with rapid timescales in the PS1-MDS we find a volumetric rate of 4800-8000 events yr-1Gpc-3(4%-7% of the core-collapse SN rate at z = 0.2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invasive species are often more able to rapidly and efficiently utilise resources than natives, and comparing per capita resource use at different resource densities among invaders and trophically analogous natives could allow for reliable predictions of invasiveness. In South Africa, invasion by the Mediterranean mussel Mytilus galloprovincialis has transformed wave-exposed shores, negatively affecting native mussel species. Currently, South Africa is experiencing a second mussel invasion with the recent detection of the South American Semimytilus algosus. We tested per capita uptake of an algal resource by invading M. galloprovincialis, S. algosus, and the native Aulacomya atra at different algal concentrations and temperatures, representing the west and south coasts of South Africa, to examine whether their per capita resource use could be a predictor of their spread and subsequent invasiveness. Regardless of temperature, M. galloprovincialis was the most efficient consumer, significantly reducing algal cells compared to the other species when the resource was presented in both low and high starting densities. Furthermore, these findings aligned with a greater biomass of M. galloprovincialis on the shore in comparison with the other species. Resource use by the new invader S. algosus was dependent on the density of resource and, although this species was efficient at low algal concentrations at cooler temperatures, this pattern broke down at higher algal densities. This was once more reflected in lower biomass in surveys of this species along the cool west coast. We therefore forecast that S. algosus will be become established along the south coast; however, we also predict that M. galloprovincialis will maintain dominance on these shores.