203 resultados para computer quantistici computazione quantistica qubit applicazioni implementazioni


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an optimization-based approach to the design of asymmetrical filter structures having the maximum number of return- or insertion-loss ripples in the passband such as those based upon Chebyshev function prototypes. The proposed approach. has the following advantages over the general purpose optimization techniques adopted previously such as: less frequency sampling is required, optimization is carried out with respect to the Chebyshev (or minimax) criterion, the problem of local minima does not arise, and optimization is usually only required for the passband. When implemented around an accurate circuit simulation, the method can be used to include all the effects of discontinuities, junctions, fringing, etc. to reduce the amount of tuning required in the final filter. The design of asymmetrical ridged-waveguide bandpass filters is considered as an example. Measurements on a fabricated filter confirm the accuracy of the design procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the generation of states close to the boundary family of maximally entangled mixed states as defined by the use of concurrence and linear entropy. The coupling of two qubits to a dissipation-affected bosonic mode is able to produce a bipartite state having, for all practical purposes, the entanglement and mixedness properties of one of such boundary states. We thoroughly study the effects that thermal and squeezed characters of the bosonic mode have in such a process and we discuss tolerance to qubit phase-damping mechanisms. The nondemanding nature of the scheme makes it realizable in a matter-light-based physical setup, which we address in some details.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents some observations on how computer animation was used in the early years of a degree program in Electrical and Electronic Engineering to enhance the teaching of key skills and professional practice. This paper presents the results from two case studies. First, in a first year course which seeks to teach students how to manage and report on group projects in a professional way. Secondly, in a technical course on virtual reality, where the students are asked to use computer animation in a way that subliminally coerces them to come to terms with the fine detail of the mathematical principles that underlie 3D graphics, geometry, etc. as well as the most significant principles of computer architecture and software engineering. In addition, the findings reveal that by including a significant element of self and peer review processes into the assessment procedure students became more engaged with the course and achieved a deeper level of comprehension of the material in the course.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a protocol for perfect quantum state transfer that is resilient to a broad class of realistic experimental imperfections, including noise sources that could be modeled either as independent Markovian baths or as certain forms of spatially correlated environments. We highlight interesting connections between the fidelity of state transfer and quantum stochastic resonance effects. The scheme is flexible enough to act as an effective entangling gate for the generation of genuine multipartite entanglement in a control-limited setting. Possible experimental implementations using superconducting qubits are also briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the conditions for probing the environment affecting an inaccessible system by means of continuous interaction and measurements performed only on a probe. The scheme exploits the statistical properties of the probe at its steady state and simple data postprocessing. Our results, highlighting the roles played by interaction and entanglement in this process, are both pragmatically relevant and fundamentally interesting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study state engineering through bilinear interactions between two remote qubits and two-mode Gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode Gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode Gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.