100 resultados para closed-form solution


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a thorough performance analysis of dual-hop cognitive amplify-and-forward (AF) relaying networks under spectrum-sharing mechanism over independent non-identically distributed (i.n.i.d.) 􀀀 fading channels. In order to guarantee the quality-of-service (QoS) of primary networks, both maximum tolerable peak interference power Q at the primary users (PUs) and maximum allowable transmit power P at secondary users (SUs) are considered to constrain transmit power at the cognitive transmitters. For integer-valued fading parameters, a closed-form lower bound for the outage probability (OP) of the considered networks is obtained. Moreover, assuming arbitrary-valued fading parameters, the lower bound in integral form for the OP is derived. In order to obtain further insights on the OP performance, asymptotic expressions for the OP at high SNRs are derived, from which the diversity/coding gains and the diversity-multiplexing gain tradeoff (DMT) of the secondary network can be readily deduced. It is shown that the diversity gain and also the DMT are solely determined by the fading parameters of the secondary network whereas the primary network only affects the coding gain. The derived results include several others available in previously published works as special cases, such as those for Nakagami-m fading channels. In addition, performance evaluation results have been obtained by Monte Carlo computer simulations which have verified the accuracy of the theoretical analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we study the achievable ergodic sum-rate of multiuser multiple-input multiple-output downlink systems in Rician fading channels. We first derive a lower bound on the average signal-to-leakage-and-noise ratio by using the Mullen’s inequality, and then use it to analyze the effect of channel mean information on the achievable ergodic sum-rate. A novel statistical-eigenmode space-division multiple-access (SESDMA) downlink transmission scheme is then proposed. For this scheme, we derive an exact analytical closed-form expression for the achievable ergodic rate and present tractable tight upper and lower bounds. Based on our analysis, we gain valuable insights into the system parameters, such as the number of transmit antennas, the signal-to-noise ratio (SNR) and Rician K-factor on the system sum-rate. Results show that the sum-rate converges to a saturation value in the high SNR regime and tends to a lower limit for the low Rician K-factor case. In addition, we compare the achievable ergodic sum-rate between SE-SDMA and zeroforcing beamforming with perfect channel state information at the base station. Our results reveal that the rate gap tends to zero in the high Rician K-factor regime. Finally, numerical results are presented to validate our analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of 5G enabling technologies brings new challenges to the design of power amplifiers (PAs). In particular, there is a strong demand for low-cost, nonlinear PAs which, however, introduce nonlinear distortions. On the other hand, contemporary expensive PAs show great power efficiency in their nonlinear region. Inspired by this trade-off between nonlinearity distortions and efficiency, finding an optimal operating point is highly desirable. Hence, it is first necessary to fully understand how and how much the performance of multiple-input multiple-output (MIMO) systems deteriorates with PA nonlinearities. In this paper, we first reduce the ergodic achievable rate (EAR) optimization from a power allocation to a power control problem with only one optimization variable, i.e. total input power. Then, we develop a closed-form expression for the EAR, where this variable is fixed. Since this expression is intractable for further analysis, two simple lower bounds and one upper bound are proposed. These bounds enable us to find the best input power and approach the channel capacity. Finally, our simulation results evaluate the EAR of MIMO channels in the presence of nonlinearities. An important observation is that the MIMO performance can be significantly degraded if we utilize the whole power budget.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates the achievable sum-rate of massive multiple-input multiple-output (MIMO) systems in the presence of channel aging. For the uplink, by assuming that the base station (BS) deploys maximum ratio combining (MRC) or zero-forcing (ZF) receivers, we present tight closed-form lower bounds on the achievable sum-rate for both receivers with aged channel state information (CSI). In addition, the benefit of implementing channel prediction methods on the sum-rate is examined, and closed-form sum rate lower bounds are derived. Moreover, the impact of channel aging and channel prediction on the power scaling law is characterized. Extension to the downlink scenario and multi-cell scenario are also considered. It is found that, for a system with/without channel prediction, the transmit power of each user can be scaled down at most by 1= p M (where M is the number of BS antennas), which indicates that aged CSI does not degrade the power scaling law, and channel prediction does not enhance the power scaling law; instead, these phenomena affect the achievable sum-rate by degrading or enhancing the effective signal to interference and noise ratio, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a multi-pair two-way amplify-and-forward relaying system with a massive antenna array at the relay and estimated channel state information, assuming maximum-ratio combining/transmission processing. Closed-form approximations of the sum spectral effi- ciency are developed and simple analytical power scaling laws are presented, which reveal a fundamental trade-off between the transmit powers of each user/the relay and of each pilot symbol. Finally, the optimal power allocation problem is studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A multiuser dual-hop relaying system over mixed radio frequency/free-space optical (RF/FSO) links is investigated. Specifically, the system consists of m single-antenna sources, a relay node equipped with n≥ m receive antennas and a single photo-aperture transmitter, and one destination equipped with a single photo-detector. RF links are used for the simultaneous data transmission from multiple sources to the relay. The relay operates under the decode-and-forward protocol and utilizes the popular V-BLAST technique by successively decoding each user's transmitted stream. Two common norm-based orderings are adopted, i.e., the streams are decoded in an ascending or a descending order. After V-BLAST, the relay retransmits the decoded information to the destination via a point-to-point FSO link in m consecutive timeslots. Analytical expressions for the end-to-end outage probability and average symbol error probability of each user are derived, while closed-form asymptotic expressions are also presented. Capitalizing on the derived results, some engineering insights are manifested, such as the coding and diversity gain of each user, the impact of the pointing error displacement on the FSO link and the V-BLAST ordering effectiveness at the relay.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study multicarrier multiuser multiple-input multiple-output (MU-MIMO) systems, in which the base station employs an asymptotically large number of antennas. We analyze a fully correlated channel matrix and provide a beam domain channel model, where the channel gains are independent of sub-carriers. For this model, we first derive a closed-form upper bound on the achievable ergodic sum-rate, based on which, we develop asymptotically necessary and sufficient conditions for optimal downlink transmission that require only statistical channel state information at the transmitter. Furthermore, we propose a beam division multiple access (BDMA) transmission scheme that simultaneously serves multiple users via different beams. By selecting users within non-overlapping beams, the MU-MIMO channels can be equivalently decomposed into multiple single-user MIMO channels; this scheme significantly reduces the overhead of channel estimation, as well as, the processing complexity at transceivers. For BDMA transmission, we work out an optimal pilot design criterion to minimize the mean square error (MSE) and provide optimal pilot sequences by utilizing the Zadoff-Chu sequences. Simulations demonstrate the near-optimal performance of BDMA transmission and the advantages of the proposed pilot sequences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, novel closed-form expressions for the level crossing rate and average fade duration of κ − μ shadowed fading channels are derived. The new equations provide the capability of modeling the correlation between the time derivative of the shadowed dominant and multipath components of the κ − μ shadowed fading envelope. Verification of the new equations is performed by reduction to a number of known special cases. It is shown that as the shadowing of the resultant dominant component decreases, the signal crosses lower threshold levels at a reduced rate. Furthermore, the impact of increasing correlation between the slope of the shadowed dominant and multipath components similarly acts to reduce crossings at lower signal levels. The new expressions for the second-order statistics are also compared with field measurements obtained for cellular device-to-device and body-centric communication channels, which are known to be susceptible to shadowed fading.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This letter analyzes the performance of a low complexity detection scheme for a multi-carrier index keying (MCIK) with orthogonal frequency division multiplexing (OFDM) system over two-wave with diffused power (TWDP) fading channels. A closed-form expression for the average pairwise error probability (PEP) over TWDP fading channels is derived. This expression is used to analyze the performance of MCIK-OFDM in moderate, severe and extreme fading conditions. The presented results provide an insight on the performance of MCIK-OFDM for wireless communication systems that operate in enclosed metallic structures such as in-vehicular device-to-device (D2D) wireless networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multi-carrier index keying (MCIK) is a recently developed transmission technique that exploits the sub-carrier indices as an additional degree of freedom for data transmission. This paper investigates the performance of a low complexity detection scheme with diversity reception for MCIK with orthogonal frequency division multiplexing (OFDM). For the performance evaluation, an exact and an approximate closed form expression for the pairwise error probability (PEP) of a greedy detector (GD) with maximal ratio combining (MRC) is derived. The presented results show that the performance of the GD is significantly improved when MRC diversity is employed. The proposed hybrid scheme is found to outperform maximum likelihood (ML) detection with a substantial reduction on the associated computational complexity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spectrum sensing is a key function of cognitive radio systems. Sensing performance is determined by three main factors including the wireless channel between the primary system and the cognitive radio nodes, the detection threshold, and the sensing time. In this letter a closed-form expression for the average probability of detection for energy detection based spectrum sensing over two-wave with diffuse power fading channels is derived. This expression is then used to optimize the detection threshold for cognitive radio nodes, which operate in confined structures that exhibit worse than Rayleigh fading conditions. Such fading conditions can represent a behavioral model of cognitive machine-to-machine systems deployed in enclosed structures such as in-vehicular environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An analysis of the operation of a new series-L/parallel-tuned Class-E amplifier and its equivalence to the classic shunt-C/series-tuned Class-E amplifier are presented. The first reported closed form design equations for the series-L/parallel-tuned topology operating under ideal switching conditions are given, including the switch current and voltage in steady state, the circuit component values, the peak values of switch current and voltage and the power-output capability. Theoretical analysis is confirmed by numerical simulation for a 500 mW (27 dBm), 10% bandwidth, 5 V series-L/parallel-tuned, then, shunt-C/series-tuned Class-E power amplifier, operating at 2.5 GHz. Excellent agreement between theory and simulation results is achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multiuser selection scheduling concept has been recently proposed in the literature in order to increase the multiuser diversity gain and overcome the significant feedback requirements for the opportunistic scheduling schemes. The main idea is that reducing the feedback overhead saves per-user power that could potentially be added for the data transmission. In this work, the authors propose to integrate the principle of multiuser selection and the proportional fair scheduling scheme. This is aimed especially at power-limited, multi-device systems in non-identically distributed fading channels. For the performance analysis, they derive closed-form expressions for the outage probabilities and the average system rate of the delay-sensitive and the delay-tolerant systems, respectively, and compare them with the full feedback multiuser diversity schemes. The discrete rate region is analytically presented, where the maximum average system rate can be obtained by properly choosing the number of partial devices. They optimise jointly the number of partial devices and the per-device power saving in order to maximise the average system rate under the power requirement. Through the authors’ results, they finally demonstrate that the proposed scheme leveraging the saved feedback power to add for the data transmission can outperform the full feedback multiuser diversity, in non-identical Rayleigh fading of devices’ channels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we consider the transmission of confidential information over a κ-μ fading channel in the presence of an eavesdropper who also experiences κ-μ fading. In particular, we obtain novel analytical solutions for the probability of strictly positive secrecy capacity (SPSC) and a lower bound of secure outage probability (SOPL) for independent and non-identically distributed channel coefficients without parameter constraints. We also provide a closed-form expression for the probability of SPSC when the μ parameter is assumed to take positive integer values. Monte-Carlo simulations are performed to verify the derived results. The versatility of the κ-μ fading model means that the results presented in this paper can be used to determine the probability of SPSC and SOPL for a large number of other fading scenarios, such as Rayleigh, Rice (Nakagamin), Nakagami-m, One-Sided Gaussian, and mixtures of these common fading models. In addition, due to the duality of the analysis of secrecy capacity and co-channel interference (CCI), the results presented here will have immediate applicability in the analysis of outage probability in wireless systems affected by CCI and background noise (BN). To demonstrate the efficacy of the novel formulations proposed here, we use the derived equations to provide a useful insight into the probability of SPSC and SOPL for a range of emerging wireless applications, such as cellular device-to-device, peer-to-peer, vehicle-to-vehicle, and body centric communications using data obtained from real channel measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we propose three relay selection schemes for full-duplex heterogeneous networks in the presence of multiple cognitive radio eavesdroppers. In this setup, the cognitive small-cell nodes (secondary network) can share the spectrum licensed to the macro-cell system (primary network) on the condition that the quality-of-service of the primary network is always satisfied subjected to its outage probability constraint. The messages are delivered from one small-cell base station to the destination with the help of full-duplex small-cell base stations, which act as relay nodes. Based on the availability of the network’s channel state information at the secondary information source, three different selection criteria for full-duplex relays, namely: 1) partial relay selection; 2) optimal relay selection; and 3) minimal self-interference relay selection, are proposed. We derive the exact closed-form and asymptotic expressions of the secrecy outage probability for the three criteria under the attack of non-colluding/colluding eavesdroppers. We demonstrate that the optimal relay selection scheme outperforms the partial relay selection and minimal self-interference relay selection schemes at the expense of acquiring full channel state information knowledge. In addition, increasing the number of the full-duplex small-cell base stations can improve the security performance. At the illegitimate side, deploying colluding eavesdroppers and increasing the number of eavesdroppers put the confidential information at a greater risk. Besides, the transmit power and the desire outage probability of the primary network have great influences on the secrecy outage probability of the secondary network.