68 resultados para ceramic bodies
Resumo:
Robust, bilayer heterojunction photodiodes of TiO2-WO3 were prepared successfully by a simple, low-cost powder pressing technique followed by heat-treatment. Exclusive photoirradiation of the TiO2 side of the photodiode resulted in a rapid colour change (dark blue) on the WO3 surface as a result of reduction of W6+ to W5+ (confirmed by X-ray photoelectron spectroscopy). This colour was long lived and shown to be stable in a dry environment in air for several hours. A similar photoirradiation experiment in the presence of a mask showed that charge transfer across the heterojunction occurred approximately normal to the TiO2 surface, with little smearing out of the mask image. As a result of the highly efficient vectorial charge separation, the photodiodes showed a tremendous increase in photocatalytic activity for the degradation of stearic acid, compared to wafers of the respective individual materials when tested separately.
Resumo:
The past two decades witnessed a global proliferation of national human rights and equality bodies. Yet the research literature remains critical of their performance, positing a series of explanations for the gap between the expectations of civil society and the contribution they make. Through a comparative analysis of six statutory human rights and equality bodies in the United Kingdom and Ireland, this article explores the range of factors that shape their performance.
Resumo:
Dense ceramics with mixed protonic-electronic conductivity are of considerable interest for the separation and purification of hydrogen and as electrochemical reactors. In this work, the hydrogen permeability of a Sr0.97Ce0.9Yb0.1O3 - δ (SCYb) membrane with a porous Pt catalytic layer on the hydrogen feed-exposed side has been studied over the temperature range 500-804 °C employing Ar as the permeate sweep gas. A SiO2-B2O3-BaO-MgO-ZnO-based glass-ceramic sealant was successfully employed to seal the membrane to the dual-chamber reactor. After 14 h of exposure to 10% H2:90% N2 at 804 °C, the H2 flux reached a maximum of 33 nmol cm- 2 s- 1, over an order of magnitude higher than that obtained on membranes of similar thickness without surface modification. The permeation rate then decreased slowly and moderately on annealing at 804 °C over a further 130 h. Thereafter, the flux was both reproducible and stable on thermal cycling in the range 600-804 °C. The results indicate an important role of superficial activation processes in the flux rate and suggest that hydrogen fluxes can be further optimised in cerate-based perovskites. © 2009 Elsevier B.V. All rights reserved.
Resumo:
A La0.6Sr0.4Co0.2F0.8O3 mixed ionic electronic conducting (MIEC) membrane was used in a dual chamber reactor for the promotion of the catalytic activity of a platinum catalyst for ethylene oxidation. By controlling the oxygen chemical potential difference across the membrane, a driving force for oxygen ions to migrate across the membrane and backspillover onto the catalyst surface is established. The reaction is then promoted by the formation of a double layer of oxide anions on the catalyst surface. Thelectronic conductivity of the membrane material eliminates the need for an external circuit to pump the promoting oxide ion species through the membrane and onto the catalyst surface. This renders this "wireless" system simpler and more amenable for large-scale practical application. Preliminary experiments show that the reaction rate of ethylene oxidation can indeed be promoted by almost one order of magnitude upon exposure to an oxygen atmosphere on the sweep side of the membrane reactor, and thus inducing an oxygen chemical potential difference across the membrane, as compared to the rate under an inert sweep gas. Moreover, the rate does not return to its initial unpromoted value upon cessation of the oxygen flow on the sweep side, but remains permanently promoted. A number of comparisons are drawn between the classical electrochemical promotion that utilises an external circuit and the "wireless" system that utilises chemical potential differences. In addition a 'surface oxygen capture' model is proposed to explain the permanent promotion of the catalyst activity. © 2007 Springer Science+Business Media, LLC.