102 resultados para centralized algorithms
Resumo:
In real time digital signal processing, high performance modules for division and square root are essential if many powerful algorithms are to be implemented. In this paper, a new radix 2 algorithms for SRT division and square root are developed. For these new schemes, the result digits and the residuals are computed concurrently and the computations in adjacent rows are overlapped. Consequently, their performance should exceed that of the radix 2 SRT methods. VLSI array architectures to implement the new division and square root schemes are also presented.
Resumo:
A genetic algorithm (GA) was adopted to optimise the response of a composite laminate subject to impact. Two different impact scenarios are presented: low-velocity impact of a slender laminated strip and high-velocity impact of a rectangular plate by a spherical impactor. In these cases, the GA's objective was to, respectively, minimise the peak deflection and minimise penetration by varying the ply angles.
The GA was coupled to a commercial finite-element (FE) package LS DYNA to perform the impact analyses. A comparison with a commercial optimisation package, LS OPT, was also made. The results showed that the GA was a robust, capable optimisation tool that produced near optimal designs, and performed well with respect to LS OPT for the more complex high-velocity impact scenario tested.
Resumo:
The treatment of the Random-Phase Approximation Hamiltonians, encountered in different frameworks, like time-dependent density functional theory or Bethe-Salpeter equation, is complicated by their non-Hermicity. Compared to their Hermitian Hamiltonian counterparts, computational methods for the treatment of non-Hermitian Hamiltonians are often less efficient and less stable, sometimes leading to the breakdown of the method. Recently [Gruning et al. Nano Lett. 8 (2009) 28201, we have identified that such Hamiltonians are usually pseudo-Hermitian. Exploiting this property, we have implemented an algorithm of the Lanczos type for Random-Phase Approximation Hamiltonians that benefits from the same stability and computational load as its Hermitian counterpart, and applied it to the study of the optical response of carbon nanotubes. We present here the related theoretical grounds and technical details, and study the performance of the algorithm for the calculation of the optical absorption of a molecule within the Bethe-Salpeter equation framework. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Potentially inappropriate prescribing in older people is common in primary care and can result in increased morbidity, adverse drug events, hospitalizations and mortality. In Ireland, 36% of those aged 70 years or over received at least one potentially inappropriate medication, with an associated expenditure of over €45 million.The main objective of this study is to determine the effectiveness and acceptability of a complex, multifaceted intervention in reducing the level of potentially inappropriate prescribing in primary care.
Resumo:
Processor architectures has taken a turn towards many-core processors, which integrate multiple processing cores on a single chip to increase overall performance, and there are no signs that this trend will stop in the near future. Many-core processors are harder to program than multi-core and single-core processors due to the need of writing parallel or concurrent programs with high degrees of parallelism. Moreover, many-cores have to operate in a mode of strong scaling because of memory bandwidth constraints. In strong scaling increasingly finer-grain parallelism must be extracted in order to keep all processing cores busy.
Task dataflow programming models have a high potential to simplify parallel program- ming because they alleviate the programmer from identifying precisely all inter-task de- pendences when writing programs. Instead, the task dataflow runtime system detects and enforces inter-task dependences during execution based on the description of memory each task accesses. The runtime constructs a task dataflow graph that captures all tasks and their dependences. Tasks are scheduled to execute in parallel taking into account dependences specified in the task graph.
Several papers report important overheads for task dataflow systems, which severely limits the scalability and usability of such systems. In this paper we study efficient schemes to manage task graphs and analyze their scalability. We assume a programming model that supports input, output and in/out annotations on task arguments, as well as commutative in/out and reductions. We analyze the structure of task graphs and identify versions and generations as key concepts for efficient management of task graphs. Then, we present three schemes to manage task graphs building on graph representations, hypergraphs and lists. We also consider a fourth edge-less scheme that synchronizes tasks using integers. Analysis using micro-benchmarks shows that the graph representation is not always scalable and that the edge-less scheme introduces least overhead in nearly all situations.