215 resultados para arsenic interstitial couples
Resumo:
The biogeochemistry of arsenic (As) in sediments is regulated by multiple factors such as particle size, dissolved organic matter (DOM), iron mobilization, and sediment binding characteristics, among others. Understanding the heterogeneity of factors affecting As deposition and the kinetics of mobilization, both horizontally and vertically, across sediment depositional environments was investigated in Sundarban mangrove ecosystems, Bengal Delta, Bangladesh. Sediment cores were collected from 3 different Sundarbans locations and As concentration down the profiles were found to be more associated with elevated Fe and Mn than with organic matter (OM). At one site chosen for field monitoring, sediment cores, pore and surface water, and in situ diffusive gradients in thin films (DGT) measurements (which were used to model As sediment pore-water concentrations and resupply from the solid phase) were sampled from four different subhabitats. Coarse-textured riverbank sediment porewaters were high in As, but with a limited resupply of As from the solid phase compared to fine-textured and high organic matter content forest floor sediments, where porewater As was low, but with much higher As resupply. Depositional environment (overbank verses forest floor) and biological activity (input of OM from forest biomass) considerably affected As dynamics over very short spatial distances in the mosaic of microhabitats that constitute a mangrove ecosystem.
Resumo:
Spanish gluten-free rice, cereals with gluten, and pureed baby foods were analysed for total (t-As) and inorganic As (i-As) using ICP-MS and HPLC-ICP-MS, respectively. Besides, pure infant rice from China, USA, UK and Spain were also analysed. The i-As contents were significantly higher in gluten-free rice than in cereals mixtures with gluten, placing infants with celiac disease at high risk. All rice-based products displayed a high i-As content, with values being above 60% of the t-As content and the remainder being dimethylarsinic acid (DMA). Approximately 77% of the pure infant rice samples showed contents below 150 µg kg(-1) (Chinese limit). When daily intake of i-As by infants (4-12 months) was estimated and expressed on a bodyweight basis (µg d(-1) kg(-1)), it was higher in all infants aged 8-12 months than drinking water maximum exposures predicted for adults (assuming 1 L consumption per day for a 10 µg L(-1) standard).
A review of recent developments in the speciation and location of arsenic and selenium in rice grain
Resumo:
Rice is a staple food yet is a significant dietary source of inorganic arsenic, a class 1, nonthreshold carcinogen. Establishing the location and speciation of arsenic within the edible rice grain is essential for understanding the risk and for developing effective strategies to reduce grain arsenic concentrations. Conversely, selenium is an essential micronutrient and up to 1 billion people worldwide are selenium-deficient. Several studies have suggested that selenium supplementation can reduce the risk of some cancers, generating substantial interest in biofortifying rice. Knowledge of selenium location and speciation is important, because the anti-cancer effects of selenium depend on its speciation. Germanic acid is an arsenite/silicic acid analogue, and location of germanium may help elucidate the mechanisms of arsenite transport into grain. This review summarises recent discoveries in the location and speciation of arsenic, germanium, and selenium in rice grain using state-of-the-art mass spectrometry and synchrotron techniques, and illustrates both the importance of high-sensitivity and high-resolution techniques and the advantages of combining techniques in an integrated quantitative and spatial approach.
Resumo:
• Inorganic arsenic (As(i) ) in rice (Oryza sativa) grains is a possible threat to human health, with risk being strongly linked to total dietary rice consumption and consumed rice As(i) content. This study aimed to identify the range and stability of genetic variation in grain arsenic (As) in rice. • Six field trials were conducted (one each in Bangladesh and China, two in Arkansas, USA over 2 yr, and two in Texas, USA comparing flooded and nonflood treatments) on a large number of common rice cultivars (c. 300) representing genetic diversity among international rice cultivars. • Within each field there was a 3-34 fold range in grain As concentration which varied between rice subpopulations. Importantly, As(i) correlated strongly with total As among a subset of 40 cultivars harvested in Bangladesh and China. • Genetic variation at all field sites was a large determining factor for grain As concentration, indicating that cultivars low in grain As could be developed through breeding. The temperate japonicas exhibited lower grain As compared with other subpopulations. Effects for year, location and flooding management were also statistically significant, suggesting that breeding strategies must take into account environmental factors.
Resumo:
A total of 549 samples of rice, maize, wheat, sorghum and millet were obtained from markets in Ghana, the EU, US and Asia. Analysis of the samples, originating from 21 countries in 5 continents, helped to establish global mean trace element concentrations in grains: thus placing the Ghanaian data within a global context. Ghanaian rice was generally low in potentially toxic elements, but high in essential nutrient elements. Arsenic concentrations in rice from US (0.22 mg/kg) and Thailand (0.15 mg/kg) were higher than in Ghanaian rice (0.11 mg/kg). Percentage inorganic arsenic content of the latter (83%) was, however, higher than for US (42%) and Thai rice (67%). Total arsenic concentration in Ghanaian maize, sorghum and millet samples (0.01 mg/kg) was an order of magnitude lower than in Ghanaian rice, indicating that a shift from rice-centric to multigrain diets could help reduce health risks posed by dietary exposure to inorganic As. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Agroecological zones within Bangladesh with low levels of arsenic in groundwater and soils produce rice that is high in arsenic with respect to other producing regions of the globe. Little is known about arsenic cycling in these soils and the labile fractions relevant for plant uptake when flooded. Soil porewater dynamics of field soils (n = 39) were recreated under standardized laboratory conditions to investigate the mobility and interplay of arsenic, Fe, Si, C, and other elements, in relation to rice grain element composition, using the dynamic sampling technique diffusive gradients in thin films (DGT). Based on a simple model using only labile DGT measured arsenic and dissolved organic carbon (DOC), concentrations of arsenic in Aman (Monsoon season) rice grain were predicted reliably. DOC was the strongest determinant of arsenic solid-solution phase partitioning, while arsenic release to the soil porewater was shown to be decoupled from that of Fe. This study demonstrates the dual importance of organic matter (OM), in terms of enhancing arsenic release from soils, while reducing bioavailability by sequestering arsenic in solution.
Resumo:
Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated.
Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined.
Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains.
These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.
Resumo:
Arsenic (As) contamination of paddy soils threatens rice cultivation and the health of populations relying on rice as a staple crop. In the present study, isotopic dilution techniques were used to determine the chemically labile (E value) and phytoavailable (L value) pools of As in a range of paddy soils from Bangladesh, India, and China and two arable soils from the UK varying in the degree and sources of As contamination. The E value accounted for 6.2-21.4% of the total As, suggesting that a large proportion of soil As is chemically nonlabile. L values measured with rice grown under anaerobic conditions were generally larger than those under aerobic conditions, indicating increased potentially phytoavailable pool of As in flooded soils. In an incubation study, As was mobilized into soil pore water mainly as arsenite under flooded conditions, with Bangladeshi soils contaminated by irrigation of groundwater showing a greater potential of As mobilization than other soils. Arsenic mobilization was best predicted by phosphate-extractable As in the soils.
Resumo:
Irrigation with arsenic contaminated groundwater in the Bengal Delta may lead to As accumulation in the soil and rice grain. The dynamics of As concentration and speciation in paddy fields during dry season (boro) rice cultivation were investigated at 4 sites in Bangladesh and West Bengal, India. Three sites which were irrigated with high As groundwater had elevated As concentrations in the soils, showing a significant gradient from the irrigation inlet across the field. Arsenic concentration and speciation in soil pore water varied temporally and spatially; higher As concentrations were associated with an increasing percentage of arsenite, indicating a reductive mobilization. Concentrations of As in rice grain varied by 2-7 fold within individual fields and were poorly related with the soil As concentration. A field site employing alternating flooded-dry irrigation produced the lowest range of grain As concentration, suggesting a lower soil As availability caused by periodic aerobic conditions.
Resumo:
Rice is elevated in arsenic (As) compared to other staple grains. The Bangladeshi community living in the United Kingdom (UK) has a ca. 30-fold higher consumption of rice than white Caucasians. In order to assess the impact of this difference in rice consumption, urinary arsenicals of 49 volunteers in the UK (Bangladeshi n = 37; white Caucasians n = 12) were monitored along with dietary habits. Total urinary arsenic (As(t)) and speciation analysis for dimethylarsinic acid (DMA), monomethylarsonic acid (MA) and inorganic arsenic (iAs) was conducted. Although no significant difference was found for As(t) (median: Bangladeshis 28.4 µg L(-1)) and white Caucasians (20.6 µg L(-1)), the sum of medians of DMA, MA and iAs for the Bangladeshi group was found to be over 3-fold higher (17.9 µg L(-1)) than for the Caucasians (3.50 µg L(-1)). Urinary DMA was significantly higher (p <0.001) in the UK Bangladeshis (median: 16.9 µg DMA L(-1)) than in the white Caucasians (3.16 µg DMA L(-1)) as well as iAs (p <0.001) with a median of 0.630 µg iAs L(-1) for Bangladeshi and 0.250 µg iAs L(-1) for Caucasians. Cationic compounds were significantly lower in the Bangladeshis (2.93 µg L(-1)) than in Caucasians (14.9 µg L(-1)). The higher DMA and iAs levels in the Bangladeshis are mainly the result of higher rice consumption: arsenic is speciated in rice as both iAs and DMA, and iAs can be metabolized, through MA, to DMA by humans. This study shows that a higher dietary intake of DMA alters the DMA/MA ratio in urine. Consequently, DMA/MA ratio as an indication of methylation capacity in populations consuming large quantities of rice should be applied with caution since variation in the quantity and type of rice eaten may alter this ratio.
Resumo:
Tetramethylarsonium has for the first time been identified in a commercially grown food product, rice, constituting up to 5.8% of the total arsenic in the rice.
Resumo:
It has previously been shown that across different arsenic (As) soil environments, a decrease in grain selenium (Se), zinc (Zn), and nickel (Ni) concentrations is associated with an increase in grain As. In this study we aim to determine if there is a genetic element for this observation or if it is driven by the soil As environment. To determine the genetic and environmental effect on grain element composition, multielement analysis using ICP-MS was performed on rice grain from a range of rice cultivars grown in 4 different field sites (2 in Bangladesh and 2 in West Bengal). At all four sites a negative correlation was observed between grain As and grain Ni, while at three of the four sites a negative correlation was observed between grain As and grain Se and grain copper (Cu). For manganese, Ni, Cu, and Se there was also a significant genetic interaction with grain arsenic indicating some cultivars are more strongly affected by arsenic than others.
Resumo:
Public health policy for arsenic needs to better reflect the ability to detect the risk(s).
Resumo:
Arsenic (As) is an environmental and food chain contaminant. Excessive accumulation of As, particularly inorganic arsenic (As(i)), in rice (Oryza sativa) poses a potential health risk to populations with high rice consumption. Rice is efficient at As accumulation owing to flooded paddy cultivation that leads to arsenite mobilization, and the inadvertent yet efficient uptake of arsenite through the silicon transport pathway. Iron, phosphorus, sulfur, and silicon interact strongly with As during its route from soil to plants. Plants take up arsenate through the phosphate transporters, and arsenite and undissociated methylated As species through the nodulin 26-like intrinsic (NIP) aquaporin channels. Arsenate is readily reduced to arsenite in planta, which is detoxified by complexation with thiol-rich peptides such as phytochelatins and/or vacuolar sequestration. A range of mitigation methods, from agronomic measures and plant breeding to genetic modification, may be employed to reduce As uptake by food crops.